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I.	Introduction	
 
These are supplementary notes for a brief discussion in PHY131, a 1st-year physics 
course primarily for students in the life sciences. 
 
We begin by discussing more fully something that has been implied throughout the term: 
that the classical physics description of the universe allows us to predict the future. The 
topic of chaos will be central to the discussion, and we will extend our understanding to 
more general features of chaotic systems. We will then discuss cases where classical 
physics is largely incapable of such predictions. 
 
Below, our explorations will involve a number of animations, some using Flash.  Thus 
you will want to have access to a computer with the Flash player and that is connected to 
the internet while reading these notes.  Sadly, because of a bad case of “not invented 
here” syndrome at Apple, the Flash player is not available for Apple iPads and iPhones. 

II.	Predicting	the	Future	
 
One of Newton’s many achievements was his theory of gravitation.  If 2 masses, m and 
M, are separated by a distance r, then the attractive gravitational force each exerts on the 
other is given by: 
 

 F = G mM
r2

                                                                (1) 

 
where G is called the universal gravitational constant. 
 
If we imagine a “solar system” that contains just a Sun fixed in 
space and an Earth free to move, as in the figure to the right, then 
Newton’s Law of Gravitation, Eqn. 1, can be coupled with his 
2nd Law of Motion,  

!a =
!
F /m or

!
F = m !a , to show that the 

motion of the Earth around the Sun is an ellipse with the Sun at 
one focus of the ellipse.  It turns out the orbit of the real Earth is 
almost a perfect circle, which is just another type of ellipse. In 
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this course, it would not have taken much time to show in detail how to find this solution, 
although we have not done so. 
 
Soon it will be important to note that assuming that the “solar system” has only one 
planet, the Earth, means we are ignoring any gravitational forces on Earth due to other 
objects. This is, of course, not the real situation, since the other planets and the Moon 
exert comparatively small but non-zero gravitational forces on the Earth. In the 19th 
century physicists learned how to deal with these extra forces as small perturbations of 
the elliptical orbit. 
 
 
If we think about the Moon in orbit around the Earth, as 
shown to the right, then if we approximate that the 
Earth is fixed in space, then the Moon’s orbit will 
similarly be an ellipse with the Earth at one focus of the 
ellipse.  Just as for the Earth-Sun system, we are 
assuming that any gravitational forces on the Moon due 
to the Sun and other planets are negligible. 
 
 
You have learned from Newton’s 3rd Law that if the 
Earth exerts a gravitational force on the Moon, the 
Moon exerts an equal and opposite force on the Earth.  
But the force goes down with larger distances as 1/ r2 , 
so the part of the Earth closest to the Moon has a 
larger force exerted on it then the force exerted on the 
centre of the Earth.  Similarly, the force exerted on the 
part of the Earth farthest from the Moon has a smaller 
force exerted on it.  
 
For the water on the surface of the Earth, this causes the tides, which is the phenomenon 
that the height of the water in the ocean varies with time with a period of about 12 hours.  
The times of the high and low tides, and their height, can be calculated far into the future.  
For example in Sydney, Nova Scotia on Wednesday October 31, 2018, which is a year 
and a half after this document was written, there will be high tides at 1:30 AM and 2:26 
PM.  So we are using Newton’s theory to predict the future. 
 
Similarly, as you probably know, a solar eclipse is when 
the Moon is between the Sun and the Earth, and the 
shadow produced by the moon causes the eclipse.  There 
will be a total solar eclipse in Toronto on Monday, April 
8, 2024, which is almost 7 years in the future. 
 
QUESTION 1. Why is the period of the tides about 12 
hours instead of about 24 hours? 
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QUESTION 2. As shown in the figure for the tides on the previous page, the high tides 
are exactly on opposite sides of the earth.  And the earth rotates on its axis with a period 
of almost exactly 24 hours.  But the time between the high tides in Sydney, Nova Scotia 
on October 31, 2018 will be 12 hours and 54 minutes.  Why isn’t the time between the 
high tides almost exactly 12 hours? 
 
This ability to predict the future is a key feature of classical physics. As Laplace wrote in 
1814: 
 

We may regard the present state of the universe as the effect of its past and the 
cause of its future. An intellect which at a certain moment would know all forces 
that set nature in motion, and all positions of all items of which nature is 
composed, if this intellect were also vast enough to submit these data to analysis, 
it would embrace in a single formula the movements of the greatest bodies of the 
universe and those of the tiniest atom; for such an intellect nothing would be 
uncertain and the future just like the past would be present before its eyes. 

 
QUESTION 3.  If Laplace is right, then do you have free will, i.e. do you have the ability 
to make a free choice about, say, whether to study physics or go to the movies tomorrow 
night? 

III.	The	Three-Body	Gravitational	Problem	
 
After Newton triumphed in solving the problem of a single fixed central mass with a 
single mass in orbit around it, he naturally decided to solve the second-most simple 
gravitational system: two fixed “Suns” with a single planet in orbit around them. He 
failed. Later many others tried to solve this Three-Body Problem and similarly failed. 
 
In fact, it wasn’t until about 1970 that a “solution” to this problem was found.  The figure 
shows the result for a particular initial position of the planet for some finite time interval. 
Soon we will discuss why I put quote marks around the word solution. 
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I have prepared a Flash animation of this 3-body system with a slightly different initial 
position of the planet, which you may access at: 
 
https://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Chaos/ThreeBody/ThreeBody.html 
 
I suggest at this point you just use the defaults of the animation, but soon you will be 
changing them. Run the animation. 
 
Now, as promised, we explore why above I put the word solution in quote marks.  If you 
look at the orbit of the planet, either in the figure on the previous page or in the Flash 
animation, then a true analytic solution to the problem is a formula that describes the 
orbit.  A moment’s reflection may convince you that this is not reasonable: if nothing else 
such a formula will be ghastly.  It gets worse: we now know that the trajectory of the 
planet never ever repeats itself: after an infinite amount of time the length of the curve 
tracing the trajectory becomes infinitely long, but in a finite space.  The conclusion, then, 
is that a “solution” to this problem, at least as we usually think of solutions in physics, 
does not exist.  
 
Finding the “solution” to the three-body system involves a technique called numerical 
integration. The technique is only practical by using computers to do the calculations.  
Therefore, it was not until the 1960’s when computers began to be available that we 
began to understand these systems, although before then some physicists, especially the 
great Henri Poincaré (1854 – 1912), managed to nibble around the edges of the problem.  
The Appendix describes how numerical integration is done. 
 
Despite this issue with a lack of an analytic solution to the three-body gravitational 
problem, the system is deterministic: if we start the planet with exactly the same initial 
position and velocity, the trajectory will always be the same. 

IV.	Chaotic	Systems	
 
The three-body gravitational problem is an example of a chaotic system.  The word chaos 
deserves a bit of explanation. In everyday life, the word chaos means a state of utter 
confusion or disorder, i.e. a total lack of organization or order. When physicists were first 
confronted with chaotic systems such as the 3-body gravitational one, the word was 
naturally adopted.  As we learned more about these systems, we discovered that there are 
a number of characteristics and organizing principles that they all share.  So the physics 
meaning of the word now is different than the everyday meaning.  In our previous studies 
we have seen many examples of everyday words ending up with different meanings in 
physics, involving words like energy, momentum, etc. 
 
Get the Flash animation of the three-body system up in your browser again. Choose 4 
independent planets using the control in the lower-right corner.  Now there will be 4 non-
interacting planets initially in exactly the same initial position.  The y components of their 
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initial velocities are slightly different: -1.00, -1.01, -1.02, and -1.03 in whatever units the 
animation is using.  Now run the animation, and see what happens. 
 
You will have seen that: 
 

• Initially the trajectories of the 4 planets track each other pretty closely. 
• After some time, the trajectories suddenly radically diverge. 

 
Thus, we see that very small changes in the initial conditions lead to huge changes in the 
later behavior of the system.  This is a characteristic of all chaotic systems, and is often 
called Sensitive Dependence on Initial Conditions.  It is sometimes called the butterfly 
effect because if the climate is chaotic, then the formation of a tornado could depend on 
the flapping of the wings of a butterfly on the other side of the planet several weeks 
earlier. 
 
There are many other systems that are chaotic. One is a 
double pendulum, such as is shown to the right.  This system 
also exhibits the characteristics shared by all chaotic systems, 
including that fact that the motion of the balls never repeats, 
and the trajectories have Sensitive Dependence on Initial 
Conditions. 
 
You may access an html5 animation of the double pendulum 
at: 
 
http://www.tapdancinggoats.com/double-pendulum 
 
Although you are, of course, free to explore the various 
options in this animation, just clicking on the Run button in the upper-left will show the 
essential features of the motion. 
 
Another chaotic system is called 
the Bunimovich Stadium. The 
stadium has walls as shown and a 
particle collides with the walls in a 
perfectly elastic collision. 
 
I have prepared a Flash animation 
of the Bunimovich Stadium, with 
two balls with identical initial 
velocities and slightly different initial positions.  You may access the animation at: 
 
https://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Chaos/Bunimovich/Bunimovich.html  
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V.	The	Transition	to	Chaos	
 
Not all initial configurations of a physical system are necessarily chaotic.  For example, 
for the three-body gravitational system with fixed equal mass suns, if the initial position 
of the planet is on the perpendicular bisector of the line connecting the two suns, the y 
axis, and has no initial velocity in the horizontal direction, the motion of the planet will 
just be an oscillation up and down the y axis. There are other initial positions of the planet 
and masses of the sun that are also non-chaotic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
QUESTION 4.  What are some initial conditions for the Bunimovich Stadium for which 
the particle will not exhibit chaotic motion? 
 
For the three-body system with the mass as shown above, if we gradually move the initial 
horizontal position of the planet to the right, at some point the motion will become 
chaotic.  The mathematics of exploring this transition to chaos is complicated, but we will 
use another system to show the essential features of the transition more simply.  It is a 
very simple model of population dynamics called the logistic map. 
 
Imagine we are trying to model the population of, say, rabbits in a forest.  We know that, 
given what rabbits like to do, the increase in the population of rabbits will be related to 
the number of rabbits that we have.  So we expect a term to look something like: 
 
 N this generation = L × Nprevious generation   
 
Here L is a constant representing the fecundity, i.e. the fertility etc., of the bunnies. 
 
We also know that when there are too many rabbits in the forest, then the lack of food, 
overcrowding, etc. will suppress the number of rabbits in the next generation. If at a 
population of 100,000 all the rabbits die, then we need a term something like: 
 

N this generation = 100,000 − Nprevious generation  
 

Putting these two terms together gives us the logistic equation: 
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N this generation = L × Nprevious generation × 100,000 − Nprevious generation( )              (2) 

 
I have prepared a Flash animation solving the equation for various values of L which you 
may access at: 
 
https://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Chaos/LogisticMap/LogisticMap.html 
 
I suggest you run the animation with the following values for L. 
 

L ≤ 0.000 029  
After some initial oscillations, the number 
of rabbits settles down to a steady-state 
value. As L increases, this steady-state 
value increases. 

0.000 031≤ L ≤ 0.000 033  

The steady-state number of rabbits 
oscillates between two values.  We say the 
number of rabbits has bifurcated. As L 
increases from 0.000 031 to 0.000 033, the 
amplitude of the oscillation increases. 

L = 0.000 035  
The steady-state number of rabbits has 
bifurcated again, and is oscillating between 
four different values. 

L = 0.000 036  
The steady-state has bifurcated again, and 
is oscillating between eight different 
values. 

L > 0.000 037  

The population of rabbits is now chaotic. 
This means that now the system exhibits all 
the properties shared by all chaotic 
systems, including the fact that the number 
of rabbits in any generation depends 
sensitively on the initial number of rabbits. 

 
 
We can plot the steady-state values of the population as a function of the value of L.  
Here is the result. 
 
 
 
 
 
 
 
 
 
 
 



 8 

As shown in the figure and as you have seen, for L < L1 as L increases the steady-state 
number rabbits increases. The population bifurcates into two steady-state values at  
L = L1 , which then bifurcates into four steady-state values at L = L2 , which then 
bifurcates into eight steady-state values at L = L3 .  Does that then bifurcate again into 16 
steady-state values at some value L = L4 ?  It turns out that it does, and that in turn 
bifurcates once again into 32 steady-state values.  And the bifurcation continues to an 
infinite number of steady-state values.   
 
Here is a link to the YouTube video that illustrates: 
 
https://www.youtube.com/watch?v=DcD74W2UcGg 
 
This is another characteristic of all chaotic systems: the transition to chaos is preceded 
by an infinite number of bifurcations. 
 
As shown in the video, the regions of bifurcations look the same regardless of the 
magnification of our view. This is called self-similarity. 
 
Much of the early work on the logistic map was in the mid 1970’s by Mitchell 
Feigenbaum while at the Los Alamos National Laboratory. At that time, computers were 
very expensive and he did not have access to one, but he had a Hewlett-Packard HP65 
programmable calculator, which was very high-tech in its day but now would only be 
something in a museum.  He was using his HP65 to calculate where the bifurcations in 
the logistic map would occur.  These calculations took a long long time, and to amuse 
himself while waiting he started trying to predict where the next one would occur.  
Referring to the figure on the previous page, he discovered that: 
 

L2 − L1
L3 − L2

= L3 − L2
L4 − L3

= . . .= Ln − Ln−1
Ln+1 − Ln

≡ δ ≅ 4.669                            (3) 

 
δ  is called the Feigenbaum Constant, and we now know that it is an irrational number 
whose value to 30 decimal places is 4.669201609102990671853203821578…. 
 
It turns out that for all chaotic systems the infinite bifurcations preceding the transition to 
chaos are similarly described by δ , so it is somehow involved in all chaotic systems.  
This is reminiscent of trying to work with circles: eventually you will need to come to 
terms with another irrational number, π ≅ 3.1415926 . Similarly, if you deal with a 
system where the change in some quantity is proportional to the value of the quantity, 
dx ∝ x , you will soon end up dealing with the irrational number e ≅ 2.718282 .  So 
there are three numbers,  δ ,  π  , and e, that have something to do with chaotic systems, 
circles, and exponential growth and decay respectively. Or perhaps these numbers are 
related to the way our minds think about these systems.  In any case, how these arise is 
sort of mysterious. 
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VI.	M	ORE	ABOUT	PREDICTING	THE	FUTURE	
 
We have already pointed at that a chaotic system is strictly deterministic: if one starts the 
system from exactly the same initial conditions it will evolve in exactly the same way.  
This means that if we know the exact initial conditions and have access to a powerful 
enough computer, we can predict the exact state of the system at some later time.  
 
This means that for the chaotic three-body gravitational system, if we know the exact 
initial position of the planet we can know its exact position at all later times.   
 
But it is impossible to know the exact initial position of a real physical planet: any 
measurement of a real physical quantity such as the position of a planet is always 
uncertain.  Perhaps you can determine the position of the planet to 2 decimal places, or to 
20 decimal places, or even to 2000 decimal places, but you cannot determine the position 
of the planet to an infinite number of decimal places.  Therefore Sensitive Dependence on 
Initial Conditions means that at some time in the future you will have no idea where the 
planet will be. 
 
Earlier we mentioned that there will be a total eclipse of the sun in Toronto on Monday, 
April 8, 2024, which is almost 7 years in the future.  But the trajectory of the Moon in 
orbit around the Earth is not just a simple ellipse: in addition to the gravitational force on 
it due to the Earth, there is a weaker gravitational force due to the Sun, and even weaker 
but non-zero forces due to the other planets, the other parts of our galaxy, the other 
galaxies, etc.  If we just think of the Earth-Moon-Sun system, it is a three-body 
gravitational system and could be chaotic.  So how can we be confident our prediction is 
of the future, when the solar eclipse occurs, is correct? 
 
You can explore this further by once again getting the animation of the three-body system 
up in your browser.  Set the controls to: 
 

• 2 planets.  This is in the lower-right corner of the animation. 
• Mass of Sun 1 to 0.  This is done by dragging the slider in the upper-left corner 

down. 
 
Since the two planets do not interact, now it is just a simple system of a single Sun with a 
single planet. So the system is not chaotic and the motions of the planets are perfect 
ellipses with Sun 2 at one focus of the ellipse. 
 
Run the animation. 
 
You will have seen that the positions of the two planets differ somewhat, and the 
difference increases smoothly with time.  This is a characteristic of non-chaotic systems: 
small differences in initial conditions lead to small differences in the time evolution of 
the system.  So even if we don’t know the initial position of a planet exactly, we can get a 
pretty good idea of how its trajectory evolves in time with only an approximate idea of 
the initial position. 
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Next keep the setting of 2 planets, but set the mass of Sun 1 back to its default value of 1 
so the system is chaotic. Run the animation and roughly time how long it takes for the 
positions of the two planets radically diverge.  Note that before the trajectories diverge, 
the system looks just like a non-chaotic one: the difference in positions increases 
smoothly with time. 
 
Now keep the setting of 2 planets, but set the mass of Sun 1 to about 0.3 and run the 
animation, again timing how long it takes for the trajectories to radically diverge. 
 
You will have seen that this system behaves in a non-chaotic fashion for a longer time 
then when the mass of Sun 1 was equal to 1. 
 
So even for the chaotic three-body system, for some length of time it behaves just like a 
non-chaotic one: an approximate idea of the initial conditions can give an approximate 
result for the time evolution.  The better our knowledge of the initial conditions, the better 
our knowledge of the later evolution. 

VII.	DISCUSSION	
 
We have seen that all chaotic systems have the following properties: 
 

• Sensitive Dependence on Initial Conditions 
• The trajectory never repeats.  Therefore, an analytical solution is not possible. 
• The transition to chaos is preceded by infinite levels of bifurcation. 
• The bifurcations are characterized by the Feigenbaum Constant. 

 
There are many other characteristics shared by all chaotic systems.  Thus we see that 
hidden in the apparent randomness of the trajectory of a chaotic system is a great deal of 
structure.  One of the features of all chaotic systems which I reluctantly don’t include 
here is that they all have fractional, i.e. non-integer, dimensionality. 
 
Sensitive Dependence on Initial Conditions means that for a real physical system that is 
chaotic, since we cannot know the initial conditions perfectly a long-term prediction of its 
later evolution is impossible.  However, for many such systems for short times an 
approximate prediction of its later state is possible. 
 
For example, many people believe that the weather is a chaotic system. If they are 
correct, then a long-term weather forecast is impossible in principle. 
 
We now know that chaotic systems are everywhere around us.  We have seen examples 
in the three-body gravitational system, the double pendulum, the Bunimovich Stadium, 
and the logistic map model of population dynamics.  Other examples include turbulent 
fluid flow, the arrhythmic beating of the heart, and epileptic brain activity. 
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There are at least more two issues regarding the ability to predict, say, when an eclipse 
will occur. One involves our understanding of the nature of gravitation, and the second is 
quantum mechanics. 

The	Nature	of	Gravitation	
 
In the late 17th century Newton triumphed in explaining the motion of the Earth around 
the Sun and the Moon around the Earth with his 3 laws of motion and his theory of 
gravitation, Eqn. 1.  This triumph not only explains what we observe, but also predicts the 
future position of the planets and Moon, although we need to add small perturbations 
because the systems are not just simple two-body ones with a central mass attracting a 
second one.  The predictions were all experimentally verified within experimental 
uncertainties until the end of the 19th century when, with higher precision measurements, 
small discrepancies from the Newtonian description began to appear. 
 
As you will learn next term, Einstein’s General Theory of Relativity of 1915 is a better 
theory of gravitation, because it explains the small discrepancies from the Newtonian 
prediction.  For example, in Einstein’s theory the motion of a planet about a central fixed 
mass is still elliptical, but the axes of the ellipse precess, i.e. rotate.  This has been 
experimentally observed for the orbit of Mercury. Here is a Flash animation that 
illustrates: 
 
https://faraday.physics.utoronto.ca/PVB/Harrison/GenRel/Flash/Precession.html 
 
Doing calculations with Einstein’s theory is very difficult, so for less precise work we 
usually use Newton’s instead.  If necessary, we can correct the results by treating the 
precession as a small perturbation of the Newtonian solution. 

Quantum	Mechanics	
 
So far we have been exclusively discussing classical physics. The word classical means 
everything before the discovery of quantum mechanics in the mid-1920’s. In classical 
physics, the universe is deterministic: identical initial conditions always leads to identical 
later states of the system.  Chaotic systems are described by classical physics. In quantum 
mechanics this strict determinism is not true: identical initial conditions can lead to 
different later outcomes. 
 
An example of a non-deterministic system is radioactivity.  We characterize the tendency 
of a radioactive substance to decay by its half-life.  If we have a large sample of 
radioactive atoms, in one half-life half of the atoms will have decayed and half will not.  
If we wait a further half-life, half of the remaining sample will decay and half will not.  
And so on.  Here is a Flash animation illustrating for the made-up element Balonium with 
a half-life of 2 seconds. 
 
https://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Nuclear/Decay/NuclearDecay.html 
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The decay of a radioactive atom is sort of like flipping a coin. For the coin, there is a 50% 
chance it will come up heads and a 50% chance it will come up tails, and whether the 
coin comes up heads or tails appears to be random.  For a radioactive atom, after one 
half-life there is a 50% chance it will decay and a 50% chance it will not, and which will 
be the case similarly appears to be random. 
 
The half-life of 13N is almost exactly 10 minutes. Imagine that 
instead of a large number of 13N atoms we have just two, as 
shown.  We wait one half-life and ask: what happens? Perhaps 
both atoms have decayed, perhaps neither atom has decayed, 
and perhaps one has decayed and the other has not. 
 
Imagine that the atom on the right decayed and the one 
on the left did not, as shown.  We ask a basic question: 
What is the difference between the two 13N atoms? 
 
The answer is easy: one atom decayed and the other did 
not. 
 
A more interesting question is: What was the difference between the two atoms, 
before we waited 10 minutes? 
 
According to quantum mechanics, there was no difference between the two atoms.  There 
is no mechanism inside the atom that determines whether or not it will decay after 10 
minutes.  There are no hidden variables. 
 
Thus the world according to quantum mechanics is not strictly deterministic: identical 
initial conditions can lead to very different outcomes. 
 
There is a difference between radioactive decay and a classical description of flipping a 
coin.  If you know the initial conditions, the thrust, velocity, and rotation of the coin 
when it leaves your hand, the details of the surface on which the coin lands, etc. then at 
least in principle you can calculate whether it comes up heads or tails.  Since you cannot 
control the exact way the coin leaves your hand, flipping a coin appears to be random, but 
it really isn’t. Similarly the evolution of a chaotic system appears to be random, but is 
not. 
 
Radioactive decay is believed to be truly random.  As you may know, Einstein never 
accepted quantum mechanics, and this randomness is one of the reasons why.  He said 
repeatedly, “God does not play dice with the universe.”  Bohr, one of the founders of 
quantum mechanics, replied, “Quit telling God what to do.” 
 
So far, physics has not been able to unify the General Theory of Relativity with quantum 
mechanics, although efforts are continuing. 
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TO	LEARN	MORE	
 
The million-copy bestseller by James Gleick, Chaos: Making a New Science (Viking, 
1987) is still a wonderful popular-level introduction. An enhanced e-book edition was 
released by Open Road Media in 2011, adding embedded video and hyperlinked notes. 
 
There is also an excellent one-hour Nova program on chaos, available at: 
 
https://www.youtube.com/watch?v=eJAs9Qr359o 
 
We mentioned above that the infinite bifurcations preceding the transition to chaos 
exhibit self-similarity.  This in turn means that chaotic systems are fractals. Benoit 
Mandelbrot pioneered the study of fractals, and the connection to chaos. His classic book 
Fractals and Chaos: The Mandelbrot Set and Beyond (Springer, 2004) is highly 
recommended. 
 
In this department, PHY460 deals in part with chaotic systems. The textbook for the 
course is accessible to you with some effort: a particularly relevant version of the text is 
Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, 
Biology, Chemistry, and Engineering (Perseus, 2015). 
 
As implied by the “Nonlinear” in the title of Strogatz’s book, chaotic systems are 
nonlinear, although not all nonlinear systems are chaotic.  Stephen W. Morris, J. Tuzo 
Wilson Professor of Geophysics in this department, leads an Experimental Nonlinear 
Physics group, whose home page is: https://www.physics.utoronto.ca/~nonlin/. The site 
includes some amazing photographs of nonlinear systems. 

APPENDIX	
 
Here we discuss how to do a numerical integration to solve a system where analytic 
solutions do not exist.  Our example will be the three-body gravitational system. 
 
At some point in time t the planet has a position  

!r (t) , and velocity  
!v(t) . From  

!r (t)  we 
know the distance of the planet from Sun 1, r1(t), and the distance from Sun 2, r2(t).  So, 
from Eqn. 1 we can calculate the force on the planet due to Sun 1,  

!
F1(t)  and the force due 

to Sun 2,  
!
F2 (t) . 

 
The total force on the planet is the vector sum of the two forces:  

!
Ftot (t) =

!
F1(t)+

!
F2 (t) . 

 
 At initial time t = 0 the initial position is  

!r (0)  and the total force on the planet is  

 
!
Ftot (0) . Then the acceleration is: 
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!a(0) =
!
Ftot (0)
m

                                                          (A1) 

 
where m is the mass of the planet. This is just Newton’s 2nd Law. 
 
Then we calculate the position of the planet at a small time Δ t  later: 
 

  
!r (Δ t) = !r (0)+ !v(0)× Δ t                                               (A2) 

 
You may already be saying to yourself, “Wait a minute! That is wrong.”  However, 
although you are right, if Δ t is very small, it is very close to correct.  In fact, we can 
make it as close to correct as we wish by making Δ t  small enough. 
 
Similarly, we calculate the velocity of the planet at time Δ t : 
 

  
!v(Δ t) = !v(0)+ !a(0)× Δ t                                                 (A3) 

 
This too is wrong, but we can make it as close to correct as we wish by making Δ t  small 
enough. 
 
We can calculate the force acting on the planet at time Δ t since from Eqn. A2 we know 
its position at that time.  Then Newton’s 2nd Law lets us calculate the acceleration at time 
Δ t . 
 
From the values we found with Eqns. A2 and A3 and the value of the acceleration at time 
Δ t , we can calculate the position and velocity at a time 2Δ t with: 
 

 

!r (2Δ t) = !r (Δ t)+ !v(Δ t)× Δ t
!v(2Δ t) = !v(Δ t)+ !a(Δ t)× Δ t

                                            (A4) 

 
From this, we can calculate the acceleration at time 2Δ t  and then the position and 
velocity at a time 3Δ t  and so on. In general: 
 

 

!r ((n +1)Δ t) = !r (nΔ t)+ !v(nΔ t)× Δ t
!v((n +1)Δ t) = !v(nΔ t)+ !a(nΔ t)× Δ t

                                     (A5) 

 
So, we can solve the three-body problem numerically, and if we have a powerful enough 
computer we can make Δ t small enough that the approximations used are negligible. 
However, the number of calculations can be huge. 
 
QUESTION A1.  What is wrong with Eqn. A2 and Eqn. A3? 
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Question	Answers	
 
Here are the answers to the questions.  As usual, I urge you to not look at them until you 
have given your best effort at answering them yourself, perhaps after discussion with 
your friends. 
 
QUESTION 1. The Earth rotates with a period of 24 hours. So the bulge in the height of 
ocean closest to the Moon passes by a point of the rotating Earth every 24 hours.  
Similarly the bulge in the height of the ocean furthers from the Moon passes by a point of 
the Earth every 24 hours.  So, the maximum height of the tides occurs twice every 24 
hours.  Therefore the period of the tides is about 12 hours. 
 
QUESTION 2.  Imagine an observer floating in free space a looking down at the earth 
and moon.  The surface of the earth moves from west to east and a point on the equator 
will be moving at 1,670 km/hr relative to the observer.  If the moon were stationary for 
this observer, the tides would be almost exactly 12 hours apart. But the moon is not 
stationary; it is orbit around the earth. It moves from west to east at 3,680 km/hr relative 
to this observer in outer space. So relative the an observer on earth, the moon moves to 
the east, and in 12 hours the moon, which defines where the high tides are, will have 
moved.  This is also why a solar eclipse moves from west to the east. 
 
QUESTION 3.  If your consciousness is governed by classical physics, then free will is 
just an illusion.  If your consciousness is not an example of classical physics, then 
perhaps you do have free will.  As we will discuss later, quantum mechanics seems to 
imply the classical physics is just an approximation, and if your consciousness is a 
quantum effect then perhaps you have free will.  The famous psychologist C.G. Jung was 
once asked, “Do we have free will or not?”  He answered, “Yes.” 
 
QUESTION 4.  Here are two such initial conditions. If the particle is moving 
horizontally and is in the middle of the stadium it will just oscillate back and forth along 
the horizontal axis.  If the particle is moving vertically and collides with the straight part 
of the wall of the stadium it will just oscillate up and down. 
 
QUESTION A1.  Eqn. A2 assumes that the velocity of the planet is constant between t = 
0 and t =Δ t .  This is wrong, because the planet is accelerating.  Eqn. A3 assumes that the 
acceleration of the planet is constant, which is also wrong: the distance of the planet from 
the suns is constantly changing so the acceleration is too.  If you change Δ t to a 
differential time dt, Eqns. A2 and A3 become correct. 
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