Learning UNIX/Linux 4

Learning About UNIX-GNU/Linux

Module 4: Working Even More Effectively

« Quoth the Shell
. Shell Control Flow

ooexit
o for
o case
0 $?
o [dev/null
o iLf
o test . | |
o Arithmetic
o while
. Arguments to Shell Scripts
. Input to Shell Scripts
« Sub-shells and the "dot" Command
. Files, Owners and Groups
. The X-Window Environment
. Exercisel
. Exercise2

Quoth the Shell

. Thetwo quoting mechanismsin the shell are apostrophes' ' and quote marks"
o Apostrophes do not expand any enclosed shell variables.

[you@ araday you] $ sonevari abl e=' hi sailor'
[you@ araday you]$ echo ' $sonevari abl e’
$sonevari abl e

[you@ ar aday you]$ _

» Apostrophes aso protect any other characters expanded by the shell such as an asterisk *.
o Quotes do expand shell variables.

[you@ araday you] $ sonevari abl e=' hi sailor’
[you@ araday you] $ echo "$sonevari abl e"

hi sail or

[you@ araday you]$ _

« Thiscan be used to create variables out of other variables.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (1 of 20) [6/21/02 8:40:28 AM]

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module3.html
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/index.html
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module5.html

Learning UNIX/Linux 4

[you@ ar aday you] $ sonevari abl e=" hi sail or'

[you@ araday you]$ ot hervari abl e="$sonevari abl e, want to party?"
[you@ ar aday you] $ echo $ot hervari abl e

hi sailor, want to party?

[you@ ar aday you]l$ _

. Graves (pronounced grahvs) or backticks, =, execute any commands placed between them, in place.

[you@araday you]$ echo "who | w -1" users are |ogged in.
11 users are |logged in.
[you@ ar aday you]$ _

+1

Shell Control Flow

. Herewediscuss bash exclusively.
o Evenuserswho prefer t csh astheir interactive shell prefer bash for shell scripts.
« Well ... most such users.
. Theexi t command immediately exits the shell.
o Giving the command to your login shell logs you out.
o Inashell script it causes the script to exit.

[you@ ar aday you]$ nore sl

#!/ bi n/ bash

echo "I amin the script, about to call exit."
exit

echo "I ampast the exit call in the script."

[you@ ar aday you]$./sl
| amin the script, about to call exit.
[you@ ar aday you]$ _

. Thef or loop allows an operation to be repeated.

[you@araday you]l$ for i in 1 2 3 hi sailor
> do

> echo $i

> done

1

2

3

hi

sail or

[you@ ar aday you]$ _

o Recall that > isthe secondary shell prompt. The shell has realised that more input is needed after the first
lineistyped, and prompts you for it.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (2 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

o After you type done the shell knows the command is completed and executes it.
o Inashell script you would not include the > symbols.

[you@ ar aday you]$ nore s2
#! / bi n/ bash
for i in1l 2 3 hi sailor
do
echo $i
done
[you@ araday you]$./s2
1
2
3
hi
sai l or
[you@ araday you]$ _

« Theecho command has been indented. Thisis only to make the script more readable.
» Suchindentation is very important for readability in complicated shell scripts.
o for can be combined with gravesto get each word in afile.

[you@ araday you] $ nore sone_file

Twas brillig and

the slithy toves

[you@ araday you]l$ for i in “cat some_file’
> do

> echo $i

> done

Twas

brillig

and

t he

slithy

t oves

[you@ ar aday you] $

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (3 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

. Thecase statement alows you to execute commands based on the value of some variable.
[you@ araday you]$ nore s3

#! / bi n/ bash
for i in1 2 3 hi sailor
do

case $i in

1) echo "Found a one";;
2) echo "Found two"; ;
3) echo "Found a three";;

salutation";;
seafari ng man";;

"hi') echo "Found
"sailor') echo "Found
esac

DYDY DD

done

[you@ ar aday you]$./s3
Found a one

Found a two

Found a three

Found a sal utation
Found a seafaring man

[you@ ar aday you]$ _

o Each possibility ends in double semi-colons.
o Thecase endswith esac, which is case spelled backwards.
. Theshell variable $? isthe exit status for the previously executed command.
o If acommand succeedsit returns 0
o If acommand failsit returns 1.
« The definitions of success and failure are given in the man page for the command.
o For gr ep areturn of O indicates at least one match, and a 1 indicates no matches.

[you@araday you]$ grep 'Bozo the C own' /etc/passwd
[you@ ar aday you] $ echo $?

1

[you@ ar aday you] $ grep you /etc/passwd

you: 9X0ef gCCSLyec: 109: 100: Your narme: / hore/ you: / bi n/ bash
[you@ ar aday you] $ echo $?

0

[you@ ar aday you]l$ $_

. Thespecid file/ dev/ nul | isa"bit bucket" to which any output can be directed.
o Anything sentto/ dev/ nul | islost forever.
o It can be used to suppress unwanted output from a command.

[you@ araday you]$ grep you /etc/passwd > /dev/null
[you@ araday you]$ _

o gr ep aso hasan option to not output any lines but only to return a status.
. Thei f structure executes its contentsif a condition is fulfilled.
o If the condition isacommand, it tests $?.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (4 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ ar aday you]$ nore s4
#!/ bi n/ bash

if who | grep you > /dev/nul
t hen

echo user you is logged in
fi

[you@ araday you]l$./s4
user you is logged in
[you@ ar aday you]$ _

« Inapipeline, $? isthe status of the last command.
« Thei f isterminated withf i , whichisif spelled backwards.
o Youcanadd an el se clauseto the script.

[you@ araday you]$ nore s5

#! / bi n/ bash
if who | grep bozo > /dev/nul
t hen
echo user bozo is logged in
el se

echo bozo is not |logged in
fi

[you@ araday you]$./s5
bozo is not | ogged in
[you@ ar aday you]$ _

o Theshell hasat est mechanismfori f conditionsthat are not just commands.
[you@ araday you]$ nore s6

#! / bi n/ bash
for i in1 2 3 hi sailor
do

if test $i =1
t hen
echo "Found a one"
fi
done
[you@ ar aday you]$./s6
Found a one
[you@ araday you]$ _

« There must be spaces on both sides of the equal sign =. Otherwise the shell will think that you are
assigning avalue of 1 tothevariable $i .
« Another way of writing at est isto use square brackets.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (5 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ araday you]$ nore s6a

#! / bi n/ bash
for i in1 2 3 hi sailor
do
if [$i =1]
t hen
echo "Found a one"
fi
done

[you@ ar aday you]$./sb6a
Found a one
[you@ ar aday you]l$ _

« Therenust be aspace after the left bracket [and a space before the right bracket | .
« Some people feel this second form is more readable.
o More than one test can be combined with - o (or) and - a (and).

[you@ araday you]$ nore s7

#! / bi n/ bash
for i in1 2 3 hi sailor
do
if [$i =1 -0 %1 =2 -0 $1 = 3]
t hen
echo "Found a digit"
f

done

[you@ ar aday youl]$./s7
Found a digit

Found a digit

Found a digit

[you@ araday you]$ _

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (6 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

o Youcanincludeanel i f (for elseif) inthei f .
[you@ araday you]$ nore s8

#! / bi n/ bash
for i in1 2 3 hi sailor
do
if [& =1]
t hen
echo "Found a one"
elif [$i = sailor]
t hen
echo "Found a seafaring man"
el se
echo "Found sonet hing el se”
fi
done

[you@ araday you]$./s8
Found a one

Found sonet hing el se
Found sonet hing el se
Found sonet hi ng el se
Found a seafaring man
[you@ araday you]$ _

« Theel i f must befollowed byt hen
« Theel seisnotfollowed byt hen
. Thet est construct includes various file operations. For example - f testsif afile exists.

[you@araday you]l$ if [-f /etc/passwd]
> then

> echo the password file exists

> fi

the password file exists

[you@ ar aday you]$ _

o Anexclamation mark ! negates the sense of the test.

[you@araday you]l$ if [! -f /etc/YouHaveBeenHacked]
> t hen

> echo You have not been hacked

> fi

You have not been hacked

[you@ ar aday you]l$ _

« There must be spaces around the! sign.

« For atest in which we are using an equals sign the following are equival ent:

[you@araday youl$ if [! $varl = $var2]

[you@araday youl]$ if [$varl != $var2]

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (7 of 20) [6/21/02 8:40:28 AM]

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/PerlCrossRef.html#File Tests

Learning UNIX/Linux 4

o Here are some common file testing commands:
Test Means
-f |File
- s |Filewith non-zero size
-d |Directory
-r |Fileisreadable by the process
-w |Fileiswritable by the process

- X |Fileis executable by the process

. The shell supports some limited arithmetic operations. For example - gt tests whether some value is greater than

another value.

[you@araday you]l$ if [2 -gt 1]
> then

> echo 2 is greater than 1

> fi

2 is greater than 1
[you@ ar aday you]$ _

o Here are some common arithmetic comparisons:
Comparison Means
- gt Greater than
-ge Greater than or equal to

- eq Equal to
- ne Not equal
-le Less than or equal to
-1t Lessthan

= Note that these constructs are for arithmetic comparisons. The equals sign = is used for string
comparisons.
o Theexpr command evaluates its arguments numerically.

[you@araday you]$ expr 1 + 2
3
[you@ ar aday you]l$ _

« expr supportsthe following mathematical operations. +- * / %
» %isthe modulus
« For* (multiplication) beware of the shell expanding it. Putting it inside apostrophes’ **
isawaysis aways agood idea.
« You can useexpr in shell scriptsto do some limited math.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (8 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ ar aday you]$ nore s9
#!/ bi n/ bash

i=1
j="expr $i + 2°
echo "Two greater than $i is $"

[you@ ar aday you]$./s9
Two greater than 1 is 3
[you@ ar aday you]$ _

= Note the two graves in the above script.
. Thewhi | e construct runs until its given condition is false.

[you@ ar aday you]$ nore s10

#! / bi n/ bash

i=1

while [$i -1t 5]
do

echo "$i is less than 5"
i=expr $i + 1
done

[you@ araday you]$./sl10
1is less than 5

2 is less than 5

3is less than 5

4 is less than 5

[you@ ar aday you]$ _

o Thewhi | e construct can run "forever" if you do not insure that at some point the condition isfalse.
= You can interrupt arunaway shell script running in the foreground by typing Ct r | - C.
o Thebr eak command breaks out of thewhi | e

[you@ araday you]$ nore sil

#!/ bi n/ bash
i=1
while [$i -1t 5]
do
echo "$i is less than 5"
i="expr $i + 1°
if [$i -eq 2]
t hen
br eak

fi
done

[you@ araday you]$./sll
1lis less than 5
[you@ ar aday you]$ _

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (9 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

ﬁ'ﬁ.-u

Arguments to Shell Scripts

. Arguments are given the names $1, $2, etc. for the first, second and further arguments.

[you@ araday you]$ nore sl12
#! / bi n/ bash

echo $1
echo $2

[you@ araday you]$./sl12 hi sailor
hi

sail or

[you@ ar aday you]$ _

o Thisisthe same syntax that we saw before for shell functions.
o Arguments to shell scripts were implemented before the shell knew how to define functions.
. shift throwsaway $1, moves$2 into $1, $3 into $2, etc.

[you@ ar aday you]$ nore s13
#1 / bi n/ bash

echo $1
shi ft
echo $1

[you@ araday you]$./s13 hi sailor
hi

sail or

[you@ ar aday you]$ _

. $# isthe number of arguments given to the script.

[you@ araday you]$ nore si4
#!/ bi n/ bash

echo $#

[you@araday youl$./sl14 hi sailor
2

[you@ ar aday you]$ _

o Every call toshi ft decreases $# by one.

£
ﬁ lap

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (10 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

Input to Shell Scripts

. echo outputsitsargumentsto st dout .
. read readsst di n into its arguments. Below, we underline what you might type.

[you@ araday you]$ nore si5
#!/ bi n/ bash

echo -n "Talk to ne:
read ARG
echo "You typed: $ARG'

[you@ ar aday you]$./sl15
Talk to ne: hi sailor
You typed: hi sailor

[you@ ar aday you]$ _

o If r ead isgiven multiple arguments they are filled in from the input using "whitespace” as the delimiter:

[you@ araday you]$ nore slba
#! / bi n/ bash

echo -n "Talk to ne:
read ARGL AR& ARG3
echo "First argunment: $ARGL"
echo "Second argunent: $ARRXR"
echo "Third argunment: $ARG3"

[you@ araday you]$./sl1b5a

Talk to nme: hi

First argunent: hi

Second argunent:

Third argument:

[you@ ar aday you]$./slb5a

Talk to nme: hi_sailor

First argunent: hi

Second argunent: sail or

Third argument:

[you@ ar aday you]$./slb5a

Talk to ne: hi_sailor, want to party?
First argunent: hi

Second argunent: sail or,

Third argunment: want to party?
[you@ araday you]$ _

« Theuse of "whitespace" asthe delimiter is exactly the same as awk.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (11 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

Sub-shells and the "dot" Command

. Shell scriptstypically begin by invoking bash with: #! / bi n/ bash
o Any variables, functions and aliases defined in the script are only defined for the shell that it invoked.
o Any variables marked for expor t in the shell that called the script will be available to the script.
. If your interactive shell isbash, then if the script does not begin with the line invoking bash the shell will
automatically invoke abash sub-shell to run it:

[you@ ar aday you]$ nore si16

t hi svar =" yabba dabba doo’
echo "Value of" '$thisvar is:' $thisvar

[you@ ar aday you]$./sl6
Val ue of $thisvar is: yabba dabba doo
[you@ ar aday you] $ echo $t hi svar

[you@ ar aday you]$ _

o You can explicitly invoke bash to run the script:

[you@ araday you]$ bash s16
Val ue of $thisvar is: yabba dabba doo
[you@ ar aday you] $ echo $t hi svar

[you@ araday you]$ _

o If your interactive shell is, say, t csh you can still invoke bash to run the script:

[you@ ar aday you] $ tcsh

[you@ araday ~]$ bash s16

Val ue of $thisvar is: yabba dabba doo
[you@araday ~]$ exit

[you@ ar aday you]l$ _

« If you invoke the script from t csh without naming bash, t csh will spawn at csh sub-shell to
runit. Thisusually gives errorsfor abash script:

[you@ ar aday you] $ tcsh

[you@araday ~]$./s16

t hi svar =yabba dabba doo: Command not found.
t hi svar: Undefined vari abl e.

[you@araday ~]$ exit

[you@ ar aday you]$ _

« Beginning abash script with #! / bi n/ bash insures that any reasonable shell, including t csh,
will invoke bash to runit.
. The special "dot" command (aperiod .) will invoke abash script that does not begin with #! / bi n/ bash in
the current shell instead of spawning a sub-shell:

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (12 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ ar aday you]$ nore sl16

t hi svar =" yabba dabba doo’
echo "Value of" '$thisvar is:' $thisvar

[you@araday you]$. ./sl6

Val ue of $thisvar is: yabba dabba doo
[you@ ar aday you]$ echo $thisvar
yabba dabba doo

[you@ ar aday you]$ _

o Recall that thefile~/ . bash_pr of i | e isexecuted for your login shell, and ~/ . bashr ¢ is executed
for al other shellsthat you spawn. Y ou can have al variables, functions and aliases defined in
~/ . bashr c aso available to your login shell by including the following fragment in your
~/ . bash_profile:

if [-f ~/.bashrc]
t hen

~/ . bashrc
fi

Files, Owners and Groups

. The-1 flagtol s producesalong listing; the flag is aletter, not the number one.

[you@ ar aday youl]$ |c
Directories:
some_directory

Fil es:

enpty file sorme_file

[you@ ar aday you]$ Is -1

total 8

SrWr----- 1 you users 0O Apr 28 07:29 enpty file

dr wxr - x- - - 2 you users 4096 Apr 28 07:29 sone_directory
STWr----- 1 you users 34 Apr 28 07:30 sone file

[you@ ar aday you]$ _

o Thefirst lineisthe approximate total size of al theitemsin thelisting in kilobytes.
o For the other lines the first column is the permissions of the item
« Thefirst characterisa- for afileand ad for adirectory
» Thenext characterisar if you have read permission for the item, a- if you do not.
« Thenext character isawif you have write permission for theitem, a- otherwise.
« Thenext character isan x if you have execute permission for the item, a- otherwise.
« The next group of three characters define the read, write and execute permissions for members of
the group named in the fourth column.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (13 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

» Thenext group of three characters define the permissions for other users that are not members of
the group.
« To enter adirectory not only must the user have at least read permission for it, but also execute
permission.
The second column is the link count, which we will discuss later.
The third column is the owner of thefile or directory.
The fourth column is the group of the file or directory
The next column is the size of the item in bytes
Next isthe time of last modification of the file.
The final column is the name of the item.
. You can empty the contents of an existing file with >.

[m}] [}])]

[you@araday you]l$ Is -1 non_enpty file

SrWr----- 1 you users 157k Apr 30 08:10 non_enpty_file
[you@ araday you]$ > non_enpty file

[you@araday you]l$ I's -1 non_enpty file

FWr----- 1 you users O Apr 30 08:10 non_enpty_file
[you@ ar aday you]$ _

. You can create a new empty filewitht ouch.

[you@araday you]$ Is -1 new file

Is: new file: No such file or directory

[you@ araday you]$ touch new file

[you@araday you]l$ Is -1 new file

STWr----- 1 you users O Apr 30 08:13 new file
[you@ ar aday you]$ _

ot ouch can aso change the time stamp of afile.
o You can aso create anew empty file with a greater than symbol >:

[you@ ar aday you]$ > anot her_new file
[you@ araday you]$ _

. Thechnod command allows you to change the read/write/execute permissions of any file or directory that you
own.
o The permissions may be manipulated symbolically as:
chnmod [who] [do] [what] fil enane.

« [who] isasingleletter which can be:
=« U the user who ownsthefile
« g member of the group
» 0 al other users
« aall users

« [do] isasingle symbol which can be
« + turn on the permission
« - turn off the permission

« [what] isasingleletter which can be
« I read permission
= WWwrite permission
» X execute permission

» Here are some examples:

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (14 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ araday you]$ Is -1
1 you
[you@ ar aday you] $ chnod
STWTr--1-- 1 you
[you@ araday you] $ chnod
-TW-T - XT-- 1 you
[you@ ar aday you] $ chnod
SFWr-X--- 1 you
[you@ ar aday you]$ _

sonefile
users

o+r sonefile;
users

g+x sonefile;
users

o-r sonefil e;
users

33 Apr 29 08:58
Is -1 somefile
33 Apr 29 08:58
Is -1 somefile
33 Apr 29 08:58
Is -1 somefile
33 Apr 29 08:58

sonefile
sonefile
somefile
sonefile

o The permissions may be manipulated numerically as:

. The shell recognises the umask construct to control the default permissions of files and directories that

chnod [d1][d2][d3] filename

« [d1],[d2] and[d3] areeach singledigits controlling the permissions for the owner,

group and others respectively.

« Eachdigitisthesumof 0, 1, 2 and 4 where;

» 0 means no permissions
» 1 grants execute permission
« 2 grantswrite permission
» 4 grantsread permission
« Here are some examples:

[you@ araday you]$ Is -1
1 you
[you@ ar aday you]$ chnod
-FTWr--r-- 1 you
[you@ ar aday you]$ chnod
-FW-F-XF-- 1 you
[you@ ar aday you] $ chnod
SFWr-X--- 1 you
[you@ ar aday you]$ _

sonefile
users

644 sonefil e;
users

654 sonefil e;

users
650 sonefil e;
users

33 Apr 29 08:58
I's -1 sonefile
33 Apr 29 08:58
I's -1 sonefile
33 Apr 29 08:58
Is -1 somefile
33 Apr 29 08:58

sonefile
sonefile
sonefile

sonefile

« Note that each possible digit corresponds to a bit in abinary number.

you create.

o Caling umask without any arguments will tell you what your current unmask is, displayed in

numerical form.

[you@ ar aday you] $ umask
026
[you@ ar aday you]l$ _

« Just asfor the numerical form of chnod the three digits are for the owner, group and others

respectively.

» Theleading zero means that the owner of anew file has all permissions.
« The two means the members of the group have had write permissions turned off.
» The six means others have read and write permissions turned off.
= When you create afile, most UNIX/Linux implementations do not have the execute bit
turned on for any users, including the owner.
= When you create adirectory, most UNIX/Linux implementations by default have the
execute bit turned on for all users.
« When you create afile using the Samba protocols from a Windoze machine, most
implementations have the execute bit turned on.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (15 of 20) [6/21/02 8:40:28 AM]

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/PerlCrossRef.html#chmod
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/PerlCrossRef.html#umask

Learning UNIX/Linux 4

o Youset aumask numerically with:
umask [d1][d2][d3]
o Cadling umask with a- S flag shows the current values symbolically.

[you@ ar aday you] $ unmask
026

[you@ ar aday you] $ unmask -S
U=r WX, g=r X, 0=X

[you@ araday you]$ _

o Youmay set aumask using the same symbolic notation asis displayed from theurmask - S command.
o Typically aumask issetinyour ~/ . bash_profi | e and/or ~/ . bashr c files.
o umask isnot actually a separate command, but is built-in to the shell.

-
s

The X-Window Environment

. From an X-terminal or the system console, the X-windows system provides a fully customisable windowing
system.

« Ubiquitous with virtually every UNIX/Linux flavor.
. Development begun at MIT in 1984.

o Thiswasjust after the first Macintosh and long before Windoze.

o Released to theworld in 1988. MIT formed the X Consortium.

o XFree86, now a member of the X Consortium, isagood source for X-windows.

« The XFree86 web siteis: http://www.xfree86.org/

. Thesystemisvery complex.
o The same geeks who can remember all of the regular expression syntax can remember alot of the X
environment, but probably not al.
. If afile. xsessi on existsin your home directory, it is used to set up your personal environment.
o Some environmentsuse afile~/ . Xcl i ent s instead of ~/ . xsessi on.
. A good placeto start is by using somebody else's. xsessi on and customising it:

[you@ ar aday you]$ nore ~sone_guru/.Xxsession

. One of the magjor complexities of X isthat its nomenclature makes the documentation hard to read. When you are
sitting in front of, say, an X-terminal it is called the server. Thisisthe wrong name in my mind: the server to
which you are logged in, such as Faraday, is the server!

. The$DI SPLAY variable defines where X displays are sent (the so-called server).

[you@ ar aday you] $ echo $DI SPLAY
pi nncd35: 0.0
[you@ ar aday you]$ _

o Whenyoulogin, the variableis set to your login device.
o Thefirst part isjust the name of the device.
» For the system consoleit is an empty field.
o Thefirst 0 isthe number of the so-called-server. It isamost always zero.
o Thesecond O isthe screen, so that if the same X-terminal has multiple monitors you can direct output to
the one you wish.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (16 of 20) [6/21/02 8:40:28 AM]

http://www.xfree86.org/

Learning UNIX/Linux 4

o If authorisations allow it, you can send an X display to another machine.
» Xcl ock generatesthe clock that most users set up.
« Xxcl ock, and virtualy all X applications, accept a- di spl ay option to send the output to
another so-called-server.
« Obvioudly X was written beforethe- -1 ong_opt i on_namne convention was
established.
« Youusethe- di spl ay option likethis:

[you@ araday you] $ xcl ock -display sone_machine: 0.0 &
[you@ ar aday you]$ _

. A window manager puts the borders around windows and includes controls to exit the window, iconify it, etc.
o Thewindow manager should be run in the background.
o They are fully customisable with configuration filesin your home directory.
« Each window manager does configuration differently.
o There are many different window managers. Faraday has:
« mwvm- the Motif window manager.
« twm- the Tab window manager (aka"Tom's window manager").
« NCD X-terminals run a Motif-like window manager inside the terminal. When students log in to
an UPSCALE NCD X-terminal we invoke this window manager for them. It isinvoked with:

[you@araday you]$ /usr/bin/rsh <SO CALLED SERVER> wm
[you@ ar aday you]l$ _

where<SO_CALLED SERVER> isthe $DI SPLAY with the stuff to the right of and including
the colon : removed.
. Further configuration uses resources. The system sets some of these for you. If afile~/ . Xr esour ces existsin
your home directory it is read when you log in and its contents are merged with the system settings. As with the
. Xsessi on file, looking at somebody else's resource file is a good way to get started.

[you@ araday you]l$ nore ~some_guru/. Xresources

o The program that loads the contents of the . Xr esour ces fileisnamed xr db.
. Theterminal programiscalled xt er m From an xt er mwindow you can "pop" anew one with:

[you@ ar aday you]$ xterm &
[you@ ar aday you]$ _

. To copy and paste text:
o "Paint” the text you wish to copy by holding down the left mouse button and moving the cursor over the
text. It will be highlighted.
o Place the cursor where you wish to paste the copied text and click the middie mouse button.
« |If you are using a two-button mouse, you can simulate the middle button by simultaneously
holding down the left and right buttons.
o Some applicationsuse Al t - X, Al t - Cand Al t - V as keyboard shortcuts to cut, copy, and paste

respectively.
« There are also afew applications that use the Windoze conventionsof Ctrl - X, Ct r | - Cand
arl-V.

. Above we saw away to run an X program on adisplay other than yours. Y ou do not want to allow this for
arbitrary machines. xhost can disable this ability:

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (17 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

[you@ ar aday you]$ xhost -
access control enabled, only authorized clients can connect
[you@ ar aday you]$ _

o You can then authorise particular machines to connect with:

[you@ ar aday you] $ xhost + some_machi ne_nane
[you@ araday you]$ _

o Any xhost command isonly for your current session. Y ou can put the commands in your
~/ . Xsessi on to execute them on login.
. Any characters that you type on the keyboard can be captured by a snooper on the network. Y ou can disable this
by making your keyboard secure.
o Should only be used to execute afew sensitive commands, since it disables things like the ability to move
awindow.
o Inthext er mwindow hold downthe Ct r | key and then hold down the left mouse button.
Scroll downto Secur e Keyboar d and release the mouse button.
« The foreground/background colors will reverse to indicate that you are running in secure mode.
Type the sensitive information as usual .
Unsecure the keyboard by again holding downthe Ct r | key, then the left mouse button and again scroll
down to the (now checked) Secur e Keyboar d item. Release the mouse button.
» Theforeground/background colors will be restored to their previous values.
. Finally, if you are on afairly modern Linux implementation you may wish to explore the desktop environments.
o To execute the Gnome desktop on login, inyour ~/ . xsessi on insert theline:

]

]

[m}

exec gnome-session ‘

« Thenlog out and log back in.
o To execute the "Kommon Desktop Environment” KDE, inyour ~/ . xsessi on insert the line:

exec startkde ‘

« Logout and log back in.
o Theauthor of this document has begun to use Gnome at home with RedHat Linux 7.2. | found all
previous versions to not be worth the trouble. Y our mileage may vary.

femeragd
B

Exercise 1

. If you have not already done so, create a sub-directory of your home directory named bi n.
. If you have not already done so, modify your $PATH so that includes your personal bi n,
. Inyour personal bi n directory write ashell script nyl s that when given no arguments doesan| s command on
your present working directory and exits.
o You will want an explicit check for no arguments and an explicit call to exi t for what follows.
o Verify that the script works correctly when invoked from a directory other than where the script is.
. Add apart after the above section that assembles all of its arguments as a single variable, say $FI LENAMES, and
executes| s with the variable as its argument. Make sure that each name is separated from the others by at least
one space. Check that it works as you expect.

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (18 of 20) [6/21/02 8:40:28 AM]

Learning UNIX/Linux 4

. Add acheck that afile corresponding to each argument exists. If not have it output a message and exit.

[you@ araday you]$./nyls does_not _exi st
does _not _exist: No such file found
[you@ ar aday you]$ _

o This meansthat you can not give directory namesto myl s. You are free to alow directory names also by
extending the test.
. Waell-behaved UNIX/Linux commands use the name of the program at the beginning of any error message. For
example:

[you@ ar aday you] $ |s does_not _exi st
| s: does_not _exist: No such file or directory
[you@ ar aday you]$ _

o This can identify where afailure occurred when a sequence of commands in a pipeline have failed.

. Theshell variable $0 is the name of the shell script. Useit in the error message generated when an argument does
not correspond to an existing file.

. If youinvokenyl s with either an absolute or relative path, that will be included in $0. Use the basenane
program to define a variable $PROGNANME that includes only the name of the script file, and use $PROGNAME in
the error message.

. Waell-behaved UNIX/Linux commandslike | s exit with status 1 upon failure. Change the exi t statement for non-
existent filesinmyl s toexi t 1 tomakeit smilarly well-behaved.

. Waell-behaved programs generate error messagesto st der r, but echo outputsto st dout . Add code to direct
echo'soutput to st derr .

o Thiswill involve an incantation similar but not identical to one discussed in the first Section of Module 3.

. Towardsthe top of the script, define avariable $LS that isdefined as' / bi n/ | s' . Everywhere that the script
cdls| s substitute LS

o Setting $LS to the absolute path to | s meansthat any aliasesfor | s that have been defined will not be
used.

. Addcodesothatif $1is-1 (thelower case letter, not the number), $LSissettol s -1, soit produces along
listing. Check that it works.

o Makesurethat if - | isthe only argument, that it executes along listing of the present working directory.
o Make sure that any further arguments are still processed as file names for $LS.
. The- mflagtol s produces ashort listing. Change the code that processesthe - | flag so it processes a- mflag
instead.
o | have no ideawhat the mis supposed to stand for!
. Modify the script so it will accept either an - | flag or a- moption.
. When you have all of this script working, you can consider yourself an accomplished shell programmer!

You, of course, know that looking at a solution is not a substitute for actually doing the exercise yourself. However, a
sample script that solves the above Exercise is available here; your script may be better than this one.

Exercise 2

. Create adirectory in your home directory named yi kes.
. Trytodetermineitspermissionswithl s -1 vyi kes.
. Read the man pagefor | s to learn how to view the permissions of the new directory. Verify that your new

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html (19 of 20) [6/21/02 8:40:28 AM]

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module3.html#The stderr Output Stream
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/4_1.txt

Learning UNIX/Linux 4

understanding is correct.

. Makethe directory readable, writable, and executable for all users.

. Verify that your changes worked.

. Immediately either change the permissions on the directory to something more reasonable or remove it entirely.

. Execute umask with no arguments (but possibly with a- S option if you wish) to verify its current value.

. Spawn asubshell of your login shell.

. Inthe UPSCALE environment we set aumask for student users such that other students can not read or write
each other's files or directories, but users not in the student group (like me) can read them by default. Set aumask
that achieves this functionality for you, members of your group, and other users.

. Create anew file and verify that the permissions are what you expect.

. Exit the subshell and verify the umask for your login shell is unchanged.

et
=

This document is Copyright © 2002 by David M. Harrison. Thisis $Revision: 1.9 $, $Date: 2002/06/20 20:17:25 $
(year/month/day UTC).

This material may be distributed only subject to the terms and conditions set forth in the Open Content License, v1.0 or
later (the latest version is presently available at http//opencontent.org/opl.shtml).

http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module4.html| (20 of 20) [6/21/02 8:40:28 AM]

http://opencontent.org/opl.shtml
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module3.html
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/index.html
http://www.upscale.utoronto.ca/PVB/Harrison/LearnLinux/Module5.html

