Learning About UNIX-GNU/Linux
Module 3: Working Effectively

The stderr Output Stream
Controlling Jobs With the Shell
Shell Variables, Functions and Aliases
o Variables
o Functions
o Aliases
Shell Scripts
Printing
Remote Access
Regular Expressions
The Stream Editor sed
Some Other Utilities
Using awk Instead of cut
Exercise 1
Exercise 2

The stderr Output Stream

Most utilities by default direct their output to the st dout stream

If not given an argument most utilities read from the st di n stream.

Asdiscussed in Module 2, here thewho command directs its output to we with a pipe:
[you@araday you] $ who | wc -1
11
[you@ ar aday you]$ _

Thewho command does not recognise a- x flag:

[you@ ar aday you] $ who -x

who: invalid option -- X

Try "who --help' for nore infornation.
[you@araday you] $ who -x | wc -|

who: invalid option -- X
Try "who --help' for nore information.
0

[you@ ar aday you]$ _

o When theillegal form of who is piped to we, the 2 line error message is displayed.

o Thenext lineisthe number of linesgivenwc - |, which was zero since who did not produce any regular

output but only generated an end of file.
o Clearly, the error message was not pipedtowc -1 since we can seeiit.
o Error messages are output to a special output stream called st derr .

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/Module2.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/index.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/Module4.html

. There are numbers associated with the three input/output streams:
Stream |Number

stdin 0
st dout 1
stderr 2

. Just asthe greater-than symbol > directs st dout to afile, you can direct st der r to afilewith 2>:
[you@ araday you]$ who -x 2> errfile | we -|

0
[you@ araday you]$ cat errfile
who: invalid option -- x

Try "who --help' for nore information.
[you@ ar aday you]$ _

. A specid incantation merges st der r with st dout :
[you@ araday you]$ who -x 2>&1 errfile | we -I !”!
2
[you@ ar aday you]$ _

o Thisturns out to be amazingly useful. Old timers were really happy when this was added to the shell.

Controlling Jobs With the Shell

. Torun acommand that takes along time to finish without tying up your terminal window, put it in the background by
ending the command with an ampersand &. The command will give you some information about the program you are
running and give you back your shell prompt.

[you@ araday you]$ | ong_runni ng_command &
[1] 12345
[you@ ar aday you]$ _

o Thisisalso the way to invoke a program, such asnet scape or emracs in an X-window environment, that
use their own window.
« X-windowsisdiscussed in Module 4.
The number in the square brackets is the job number assigned by the shell
The other number is the process identification number (pi d) assigned by the kernel.
If the program produces output, you will want to direct it to afile with >
If the program requires input, you will want to prepareit in afile and feed it to the program with <
. You may seethe jobsthat are running with thej obs command:

[you@ ar aday you] $ j obs
[1] + Runni ng | ong_runni ng_conmand &
[you@ ar aday you]$ _

a]] m}

o Youcanlist al your processes with ps as another way of finding the jobs you are running:

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#Checking stderr

[you@ ar aday you] $ ps
PID TTY TI ME CVD
12340 pts/0 00:00: 00 bash
12345 pts/0 00: 01: 23 1 ong_runni ng_comand
13589 pts/0 00: 00: 00 ps
[you@ ar aday you]$ _

« Thefirst column isthe process identification number assigned by the kernel.
« The second column is the device ("teletype™) that invoked the command.
« Thethird columnisthe cpu time used by the process in hours:minutes:seconds.
» Thefourth column is the name of the command.
= ps labelsits columns by default. This makesit a chatterbox compared to many UNIX/Linux programs,
such aswho.
. You can kill abackground job with ki I | % wheren it the job number assigned by the shell.

[you@araday you]$ kill o
[you@ ar aday you]$ _

o Youcan aso kill thejob by giving ki | | the process identification number pid assigned by the kernel

[you@araday you]$ kill 12345
[you@ ar aday you]$ _

o If youkill your login shell you will be logged out.
. Say you execute acommand, such as| ong_r unni ng_conmand, in the foreground. Then you do not get your shell
prompt back.

[you@ ar aday you] $ | ong_runni ng_command

If you then wish to place it in the background, you first stop the job with Ct r | - Z and then place it in the background
with bg

Nz

[2] + Stopped | ong_runni ng_conmand
[you@ ar aday you] $ bg

[2] + l ong_runni ng_command &
[you@ ar aday you]$ _

. When you log out, by default all jobs that you are running will be terminated. The nohup command makes the
process immune to being killed when you "hang up” i.e. log out:

[you@ araday you] $ nohup other_| ong_runni ng_command &
[3] 12571
[you@ ar aday you]$ _

Shell Variables, Functions and Aliases

. A few parts ot this section has some discussion that only appliesto the bash shell.

o Inmost of those cases, t csh has the same functionality with slightly different syntax.
. Theshell maintains alist of variables, functions and aliases that have been defined.

o The variable $TERMidentifies the type of terminal being used

o Itsvalue may be seen with echo

[you@ ar aday you] $ echo $TERM
xterm
[you@ ar aday you]$ _

o By convention, variables names are all upper-case, although the convention is not required.

. You assign anew variable name with:

[you@ araday you] $ nyvari abl e=' hi sailor’
[you@ ar aday you] $ echo $nyvari abl e

hi sail or

[you@ ar aday you]$ _

o Note that when defining the variable, the dollar sign $ is not part of the name.
o Thereare no spaces around the equal sign =
o Fort csh theequivadent command is: set nyvari abl e=' hi sail or’

. The primary shell prompt is defined by a variable $PS1

[you@ ar aday you] $ echo $PS1
[\Nu@h \W\$
[you@ ar aday you]$ _

o Thevariables names\ u etc. are certainly obscure.
o The variable names are documented in the man page for bash.
o You may change the prompt to anything that you wish:

[you@ ar aday you] $ PS1='"hi sailor:
hi sail or:

. Theshdll isjust another program. Y ou can invoke a shell from the shell.

o Herewe spawn ashell from the login shell. It is not totally obvious that you are no longer running your login
shell. But if you exit the spawned shell you get back to your login shell:

[you@ ar aday you] $ bash
[you@ ar aday you]$ exit
[you@ ar aday you]$ _

= You can spawn any shell from any other shell in asimilar way:
[you@ araday you] $ tcsh

[you@araday ~]$ exit
[you@ araday you]$ _

o By default, variables are defined only for the current shell:

[you@ ar aday you] $ nyvari abl e='hi sailor'
[you@ ar aday you] $ echo $nyvari abl e

hi sail or

[you@ ar aday you] $ bash

[you@ ar aday you] $ echo $nyvari abl e

[you@ ar aday you]$ exit

[you@ ar aday you] $ echo $nyvarai bl e
hi sail or

[you@ ar aday you]$ _

o You can tell the shell to export avariable to all sub-shells and processes with export :

[you@ ar aday you] $ ot her_vari abl e=' bye sail or’
[you@ araday you] $ export other_variable
[you@ ar aday you] $ echo $ot her _vari abl e
bye sail or

[you@ ar aday you] $ bash

[you@ ar aday you] $ echo $ot her_vari abl e
bye sail or

[you@ ar aday you]$ exit

[you@ ar aday you] $ echo $ot her_varai bl e
bye sail or

[you@ ar aday you]$ _

« Fort csh to define avariable that will be known to all sub-shells, define it with:
setenv other_variable 'bye sailor'
« Notethereisno equal sign in the above.
. The shell variable $PATH defines the path used to find commands to be executed:
A

[you@ ar aday you] $ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:.
[you@ ar aday you]$ _

o Thedirectories are searched in the order in which they are listed.
o Thefields are separated by colons: just likethe/ et ¢/ passwd file. Thisis common in UNIX/Linux.
o Thedirectory indicated by adot . stands for the present working directory.
« Some environments do not include the present working directory in the path by default.
« If itisincluded, it should always be last to prevent a"trojan horse" attack.
o You can append adirectory to the path with:

[you@ ar aday you] $ PATH=$PATH. / sone/ di rectory
[you@ ar aday you]$ _

o Thewhi ch command identifies where a program is located:

[you@ ar aday you] $ whi ch net scape
[usr/ bi n/ net scape
[you@ ar aday you]$ _

. You can aso define functions. For example, the following sequence of commands is executed often by all users:

[you@ ar aday you]$ cd sone_directory
[you@ araday you]$ Is

o You can execute the same sequence in asingle line by separating the commands with a semi-colon ;
[you@ araday you]$ cd sone_directory; Is

o You can define afunction chd that rolls these two commands into one:

[you@ ar aday you]$ function chd()
> { cd $1; Is; }
[you@ araday you] $ chd sone_directory

« $1 refersto the first argument given to the function.
=« If youinvoke chd with no arguments, it will cd to your home directory and list its contents.
= A function can have multiple arguments, named as $1, $2 etc.

ot csh does not have functions.

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#ENV

. You can form an alias to customise a command.

[you@ araday you] $ alias foo="pwd'
[you@ araday you] $ foo

/ horre/ you

[you@ ar aday you]l$ _

o Aswith shell variables, there are no spaces around the equal sign =
o You can alias acommand to itself. For example, the- i flag to r masks for confirmation before removing a
file. Y ou can make this the default behavior for r mwith:

[you@ araday you]l$ alias rm' rm-i'
[you@ araday you]$ rmsone_file
rm renove “sonme_file' ? _

« If you typey thefile will be removed.
« Typing anything else or just pressing Ent er will keep sonme_fi | e from being removed.
o Forthet csh theadiascommandis.alias rm'rm-i’
« Note that thereis no equal sign in the above.
. You can customise the behavior of your login shell by creating afile. bash_pr of i | e inyour home directory and
defining in it any variables, functions and aliases that you wish. Such afile might look like:

[you@ ar aday you] $ cat .bash_profile
Local aliases

alias rme'rm-i'

alias mv="mmv -i'

alias cp="cp -i'

function chd() { cd $1; Ic; } # define a function
export MY_Cl RCUS_NAME=' Bozo the C own'

[you@ ar aday you]$ _

Lines that begin with a sharp sign # are comments
A sharp sign # that appears elsewhere in aline begins a comment that extends to the end of the line.
Empty lines are ignored.
Theline:
export My_Cl RCUS NAME=' Bozo the C own'
is a shorthand way of writing:
MY _Cl RCUS _NAME=' Bozo the O own'; export My_Cl RCUS NAME
o Above we made a distinction between your login shell and any shells that you spawn from it. If the file
~/ . bashr ¢ existsin your home directory, it is executed for all shells except your login shell.
« Ther c inthefile nameisarelic of ancient IBM mainframes, which had run command files named
r unconmor r ¢ for short. UNIX/Linux configuration involves many files and directorieswithanr ¢ in
their name.
« Fortcsh users, thefile~/ . t cshr c isread by both login and non-login shells.
o Thesystemfile/ et ¢/ profi | e isexecuted for al login shells.
o Itisoften helpful to see other user's configuration files to see how to set up your own:

[you@ araday you]$ nore ~sonme_guru/.bash_profile

m}] [m]]

Shell Scripts

. For smple situations, you saw in Module 2 that the shell's history mechanism can save you much typing. For more
complicated or often-repeated tasks, this may not be enough.
. You can create atext file containing shell commands to be executed. Such files are called shell scripts.
o The. bash_profil e fileisashell script.
. You aert the system to invoked a shell to run the contents of the file by beginning the file with the line:

#! / bi n/ bash

o The . bash_profil e script does not begin by invoking / bi n/ bash to runit, since we want it to be
invoked by the shell that called it.
o Other programs can be used in similar scripts. For example, programs written in Perl usually begin with:

#! [usr/ bi n/ perl ‘

. You can then put in any shell commands that you wish:
#!/ bi n/ bash

script to output the nunber of lines in the
lines in the password file

echo -n ' The nunber of lines in the password file is: '
cat /etc/passwd |
we -1

o The#! inthefirst lineisan exception to the rule that lines that begin with a sharp sign # are acomment.
o The history of this exception is ghastly!
. You then need to make the file executable:

[you@ araday you]$ chnod +x file_nane

o chnod stands for change mode
o There are many modes to afile or directory, all of which can be controlled with chrod
o chnod isdiscussed more fully in Module 4.
. You can then execute thefile:
o If your present working directory isincluded in your path and no executable file with the same name appearsin
earlier directoriesin your path, then just name thefile:

[you@ araday you]$ fil e_name
The nunber of lines in the password file is: 2786
[you@ ar aday you]$ _

o You can always execute the desired file with:

[you@ araday you]l$./file_nane
The nunber of lines in the password file is: 2786
[you@ ar aday you]$ _

» Recall that the period . refersto the present working directory.

Printing

. Each flavor of UNIX/Linux has variations on how to do printing. We shall discuss modern Linux implementations
o We are describing the LPRng software, which is available from: http://www.lprng.conv.
« Many Linux distributions include LPRng.
. You may determine which printers are currently accepting requestswith | pstat -a

[you@ araday you]$ I pstat -a

hp2100 accepting requests since 2002-04-27-13:19: 56. 892
hp4np accepting requests since 2002-04-27-13:19:56. 910
hp4050n accepting requests since 2002-04-27-13: 19: 56. 901
hpVsi accepting requests since 2002-04-27-13:19:56.919
[you@ ar aday you]$ _

o | pstat means"line printer status." | haven't seen an actua line printer in along time.
. The shell variable SLPDEST determines which printer isthe current print destination.

[you@ ar aday you]$ echo $LPDEST
hpVsi
[you@ ar aday you]$ _

. Youmay send afileto the printer with| p or | pr
[you@araday you]$ Ip sone_file
request id is you@ araday+56
[you@ ar aday you]$ _

o Thecommands| p and | pr are synonyms
o Thenumber (56 in this case) isthe request id assigned by the print spooler.
o Asawell-behaved UNIX/Linux program, if | p isnot given an argument it prints from st di n.
. Many installations, like ours, use PostScript as the language for its printers.
o If the print spooler is given aPostScript file, it is passed unchanged to the printer.
o If the spooler isgiven atext file, it invokes afilter such asa2ps to convert it to PostScript.
o For non-text files, many utilities exist to produce a PostScript file and/or convert to PostScript and send it
directly to the printer.
« For graphicsfilesdi spl ay and gi np can deal with awide variety of formats.
. Many flavors of UNIX/Linux havea-t option to the man command to typeset the page for printing.

[you@ araday you]$ man -t nkdir

o For many modern Linux distributions the flag produces PostScript which can then be sent to the printer:
[you@ araday you]$ man -t nkdir | Ip
request-id is you@ ar aday+57
[you@ ar aday you]$ _

o For some other flavors of UNIX/Linux, the flag typesets the page and sends it to the printer:
[you@one_nachi ne you] $ man -t nkdir
request-id is you@one_machi ne+88
[you@ ar aday you]$ _

o The man page for man should document how your the command works for your system.

http://www.lprng.com/

. You can monitor the job with | pq

[you@ ar aday you]$ | pq
Printer: hpVsi @araday 'Printer in Room 126’
Queue: 1 printable job
Server: pid 25321 active
Unspool er: pid 25322 active
Status: printing 'harrison@ araday+56' starting OF 'of hp' at 13:45:36.743
Rank Onner /1D Cl ass Job Files Size Tine
active harri son@ ar aday+56 A 56 sone_file 377 13:45:36
[you@ ar aday you]$ _

o If there is more than one job spooled for the printer, they will al be listed.
. Tocancd aprinting job usecancel :

[you@ ar aday you]$ cancel -P hpVsi 56

o The- P option isrequired to identify the printer.
o The56 isthe request id assigned by the print spooler.

Remote Access

. You can access most UNIX/Linux systems from anywhere on the Internet.
. tel net isthe best-known program to log in to a UNIX/Linux box remotely
o | strongly recommend you not use telnet
« When you give your password, it is sent as clear text over the network. Any "packet sniffer" can grab it.
« Itisa'"roach motel": full of bugs.
. The"secure shell" ssh encrypts the password before sending it to the UNIX/Linux machine, which then decryptsiit.
o Thisis much more secure than telnet.
« For Windoze machines, the PUTTY program works very well. It is free and available at
http://www.chiark.greenend.org.uk/~sgtatham/putty/
o There are aso secure ways to copy files from one machine to another using the same technology called scp
andsftp.
= You should consider using scp or sf t p instead of the file transfer protocol programf t p.
o Many system administrators very much want to removet el net andf t p from their computers, but users
object too strenuously.

Regular Expressions

. Regular expressions, used in the name of the command gr ep for example, pervade UNIX/Linux and its utilities.
. Ittakesaparticular kind of geek to be able to remember all of the sometimes very complex syntaxes of al the
possible regular expressions.
. All UNIX/Linux geeks are aware of the basics of regular expressions that we will discuss here.
. Thecaret * stands for the beginning of aline.
o All first and second year accounts on Faraday begin with the letter X. Thusto get all of these accounts out of
the password file but not match the letter x anywhere other than at the beginning of each line use:

[you@ ar aday youl$ grep '~x' /etc/passwd

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#Regular Expressions

o Tomatch aliteral caret in afile precede it with a backslash:
[you@ ar aday you]$ grep '\~ sonefile ‘

o Thisrule appliesto other regular expressions. precede it by a backsash to turn off its special meaning.
. Thedollar sign $ stands for the end of aline. Thus we could get all t csh users out of the password file with:

[you@ araday you]$ grep 'tcsh$' /etc/passwd ‘

o You can get all empty lines from afile with:
[you@ ar aday you]$ grep '"$' sonefile

. Theperiod. matches any single character. Thus to extract al the lines of afile containing exactly three characters
use:

[you@araday you]$ grep '"...$' sonefile

. Theasterisk * matches zero or more occurrences of the preceding character. Thus two extract all lines that contain
one or more of the letter X in arow use:

[you@ araday you]$ grep ' XX*' sonefile

o Tomatch all linesthat contain two X letters with anything at al between them, including nothing:
[you@ araday you]$ grep 'X. *X sonefile

o To match al lines that contain two X letters with one character or more between them:
[you@ araday you]$ grep 'X. .*X sonefile

o Regular expressions are greedy: they always match the longest matching pattern. Thus the following matches
theentirelinein afile:

[you@araday you]$ grep '.*' sonefile

. Squarebrackets[] matches any of the characters between the brackets. Thus to extract all lines containing either
t he or The inafile

[you@ araday you]$ grep '[Tt]he' sonefile

The above will also match Ther e, bot her ,t hei r, etc.

Ranges can be specified. Thus[0123456789] isthesameas| 0- 9]

To specify al upper caseletters use [A- Z]

To specify all letters, upper case and lower case, use[A- Za- z]

A caret just inside the left bracket negates the sense of the match. Thus[~ A- Z] matches everything except an
upper case letter.

] m}]] [m]

The Stream Editor sed

. Much of the syntax is derived from the original UNIX editor ed

o | know a couple of people who still use ed regularly, but they are widely regarded as dinosaurs.
. sed isnot necessarily the most used UNIX/Linus utility.

o Hereweuseit toillustrate the principles of many utilities.
. Theoutput from sed isawaysst dout .

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#s2p

. Aswith many UNIX/Linux utilities, it thinks of the world as made up of lines.

o In common with many UNIX/Linux utilities, g means quit. Thus an equivaent to the head command, which

quits after the first 10 lines of afile, is:
[you@ araday you]$ sed '10q" sonefile

o Toget sed to quit whenever it encounters either The or t he put the regular expression between slashes:
[you@araday you]l$ sed '/[Tt]he/q" somefile

. Above we pointed out that ps isverbose, in the sense that by default it labels the columns of its output:

[you@ ar aday you] $ ps
PID TTY TI ME CVD
12340 pts/0 00: 00: 00 bash
12345 pts/0 00: 01: 23 I ong_runni ng_conmand
13589 pts/0 00: 00: 00 ps
[you@ ar aday you]$ _

o You may use sed to delete the column labels with:
[you@ araday you]l$ ps | sed '1d’ !!I
12340 pts/0 00:00: 00 bash
12345 pts/0 00: 01: 23 1 ong_runni ng_comand
13589 pts/0 00: 00: 00 ps

[you@ ar aday you]$ _

= You may similarly delete any line by giving its line number.

. You may substitute strings for other stringsusing s/ f r om t o/ . Thusto change occurrences of either The or t he to

Das in each line of thefile:
[you@ araday you]$ sed 's/[Tt]he/Das/' somefile

o By default, sed only replaces the first occurrence in each line. To replace al occurrencesin each line add a

global flag g:
[you@ araday you]$ sed 's/[Tt]he/Das/g' sonefile

. sed by default aways writes every lineto st dout , whether or not it gets changed. The - n option tells the program

not to output aline unlessyou tell it to. You tell sed to output aline with p (for "print"). Thusto grep lines
containing either The ort he:

[you@araday you]$ sed -n '/[Tt]he/p' sonefile ‘

o This has exactly the same effect as.
[you@ araday you]l$ grep '[Tt]he' sonefile ‘

. In common with many UNIX/Linux utilities, sed is capable of agreat number of advanced operations, which we
shall not discuss here.

Some Other Utilities

. Themany utilities plus the ability to combine them isamajor factor in making UNIX/Linux so powerful.

. Herewe very briefly describe some of the most-used other utilities. Thelist is far from exhaustive and is only shown

to give you some of the flavor of the UNIX/Linux environment.

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#Opening Pipes

sort -investigated in Module 2.

gr ep - discussed in Modules 2 and 3.

cut - usedin Module 2's Exercise 3.

we - discussed in Module 2

uni g - removes any linesthat are identical to the preceding line.

t r - trandlate letters or ranges of lettersinto other letters or ranges of letter.
nl - numbersthelinesin thefile

] a]] a]] m}

t ee - copiesst di ntost dout unchanged, andaso | stdin

directsst di n to afile. Thefigureillustratest ee. —el oo somefile

o fnt -asimpleformatter for text files.

stdout
E—

o expand - convert tabs to spaces.
o awk - apowerful "little programming language"
« Complex enough that there is awhole book on it.
« Named after the authors: Aho, Weinberger and
Kernighan
o perl -avery powerful programming language
« Thelearning curve to find out how to do simple
thingsisfairly gentle.

« Thelanguage of choice for interactive web programs, also known as cgi scripts.

« Many many books are available.

« Haslargely replaced awk for many users.

= Many, including the author, find its syntax baroque.

» The name stands for "perfectly eclectic rubbish lister" among other things.

Using awk Instead of cut

. Inearlier Exercises you have used cut to cut parts out of afile.

. For ASCII text files with fields separated by one or more spaces or tabs, awk provides an easy alternative. Hereisa

text file:

[you@ araday you]$ cat sone_file
ham neat

spam sen - meat

kol bassa unknown
broccoli vegetable
beer beverage
[you@ ar aday you] $

o There are 6 spaces between hamand meat , two tabs between spamand seni - meat , and single spaces

between the fields in the other three linesin thefile.
o awk will treat multiple instances of "whitespace" as asingle field separator.
. To pick out the second field:

[you@ araday you]$ cat sone_file |
>awk ' { print $2 }

nmeat

sem - meat

unknown

veget abl e

bever age

[you@ ar aday you] $

o Thefieldsare named $1, $2, $3, etc.

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/PerlCrossRef.html#a2p

o You could, of course, give the file name as an argument to awk:

[you@araday you]l]$ awk ' { print $2 } ' sone_file
nmeat

sem - meat

unknown

veget abl e

bever age

[you@ ar aday you] $

o Itispossible to do the above operation with sed, but the regular expression syntax is pretty gory:

[you@ araday you] $ cat sone_file

> sed 's/N. *[[:space:]][[:space:]]*//"
nmeat

sem - meat

unknown

veget abl e

bever age

[you@ ar aday you] $

o Inthe previous section, we mentioned the Per| programing language. Hereis away to have Perl do the same
operation:
[you@ araday you] $ cat sone_file
> perl -lane "print $F[1]°
nmeat
sem - neat
unknown
veget abl e
bever age
[you@ ar aday you] $

= Perl begins counting from zero. So the second field is$F[1] .
« Theoptions, necessary for this to work, are briefly described with:

[you@ ar aday you] $ perl --help

1

Y

Exercise 1

. Create the following shell script named | ong_r unni ng_conmmand

#! / bi n/ bash
i =0

Note that in the following line there
are spaces around the square brackets
and around the -It.

while [$i -It 100000] # The nunber is 100, 000

do
Note that 2 graves, ~, and no apostrophes, ',
are in the next I|ine.
i="expr $i + 1°

done

o For your convenience, we have created a version of the above script as atext file named | ong. t xt . Y ou may
download it by clicking here.
» Remember to execute: chnmod +x | ong. t xt
= You may then execute: mv | ong. t xt | ong_r unni ng_command
o For now, the script may be treated as "magic.” We will de-mystify it in the Module 4.
Start it running in the foreground.
Move it to the background.
Use ps to verify that it is running.
o You may see some of the commands in the shell script being executed when you use ps.
Usef i | e to determine what kind of filethe script is.
Kill I ong_r unni ng_comand.
Use ps to verify that it is no longer running.
Start | ong_r unni ng_command again in the foreground.
Kill it by typing aninterrupt Ct r | - C.

o Sending an interrupt to blow away some program or partial input line is avery common operation.
Create afile. bashr ¢ in your home directory if one does not already exist. Otherwise edit the existing one.

o Haveit set avariable sonevar i abl e to any contents that you wish.

o Spawn anew shell from your login shell and verify that the variableis set properly.

o Clean up thefile by removing the definition of sonevari abl e

o Exit the subshell to return to your login shell.

Create adirectory in your home directory named bi n and changeinto it.

o Create ashell script in the bi n directory with almost any name that you wish. Do not use the name of an

existing command however.

o Haveit count the number of users currently logged in.

o Verify that the script works correctly.

o Often the same user islisted as having multiple logins. Modify the script so that it usesawk or cut to pick out
the user names, sor t the output by these names and then use uni g and we to count the number of unique
logins currently logged in.

Spawn a new shell.

Modify the $PATH variable so that it includes your newly created bi n directory.
Change to some other directory, suchas/ t np

Verify that your shell script runsjust by giving its name.

Exit the subshell.

What directory are you in now?

What is your $PATH?

Unless you wish to keep your new shell script remove it.

« Many users maintain their own personal bi n of their own commands and edit ~/ . bash_profil e

and/or ~/ . bashr ¢ so that the $PATH always includesiit.

m}] m}] [m]] m}]

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/long.txt

Exercise 2

. Usesed to create afile newpasswd in your home directory that isacopy of / et ¢/ passwd except that your login
isreplaced by the string bozo.
o Thefollowing two ways of using sed are equivalent:

[you@ ar aday you] $ cat /etc/passwd |
> sed ' <sone_sed_comands>'

[you@ araday you] $ sed ' <sonme_sed_commands>' /etc/ passwd

o Besurethat if the string matching your login appears elsewherein thefileit is not changed .

o Besurethat if your login nameisyou that you do not change the login of a user named you?2.

o Usedi f f to compare the two versions of the password file.
. Recdl that the fourth field in the password file is the number corresponding to the group (the gi d) of the user.

o Look in the password file to find the number of the group you arein.

o Confirmby usingi d .

o Look inthefile/ et ¢/ gr oup to discover how the gi d is correlated with the name you see in the output from

i d.

. Create ashell script to find out how many users are in your group. Do this two different ways:

o Usecut,grepandwc -1 tocountthe number of usersin your group.

o Useonlygrepandwec -1 . (Thiswill beagood test of your knowledge of regular expressions.)

« By thetime your shell script isfinished, it will have five different proceduresin it. Useecho to
identify which output was produced by which procedure.
« By the end, you may need to pipe the output of your script to a pager such asnor e or | ess.

. Addto your shell script afacility to count the number of usersin each group:

o Usecut topick out al thegi ds, sort them and then useuni q - ¢ to count them.

o It will beniceto apply afurther sort - n sothat output is sorted by the number of usersin each group.

« Thesort | unig -c | sort -n sequenceisafrequently occurringidiomin shell scripts.
o Duplicate the code to count the number of usersin each group, but modify it so that it sorts by the gid instead
of the number of usersin each group.
o Duplicate this code and add acall to awk at the end to print the gid first followed by the number of usersin

that group.
= You will want to know that when you ask awk to print more than onefield, the fields should be
separated by acomma, .

Y ou, of course, know that looking at a solution is not a substitute for actually doing the exercise yourself. However, a sample
script that solves the above Exerciseis available here; your script may be better than this one.

This document is Copyright © 2002 by David M. Harrison. Thisis $Revision: 1.20 $, $Date: 2003/06/12 12:43:19 $
(year/month/day UTC).

This material may be distributed only subject to the terms and conditions set forth in the Open Content License, v1.0 or later
(the latest version is presently available at http://opencontent.org/opl.shtml).

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/3_2.txt
http://opencontent.org/opl.shtml
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/Module2.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/index.html
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/LearnLinux/Module4.html

	www.upscale.utoronto.ca
	Learning UNIX/Linux 3

