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I.	INTRODUCTION	
 
When we give a test or other assessment to a class, the distribution of scores can have a 
variety of shapes: flat, double-peaked, ramped, and more.  But because of regression to 
the mean, the most common distribution is bell-shaped or approximately Gaussian.  This 
type of distribution is so common that the statisticians call it normal.  Normal 
distributions have been extensively analyzed. 
 
A favorite example of the ubiquitous nature of the normal distribution is a quincunx, also 
known as a Galton board or a bean board.  Figure 1 shows a quincunx.1 Devised by 
Galton in about 1860, it consists of a number of balls dropped one at a time onto a peg 
located so that each ball bounces to the left or to the right with equal probability. Below 
that peg are two pegs, each positioned so that any ball that collides with it also has equal 
probability of bouncing to the left or to the right. This continues for a number of layers, 
and then the balls are collected in bins at the bottom. As can be seen, as the number of 
balls becomes large, the distribution of balls in the bins goes to a Gaussian. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A Quincunx 
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When we wish to characterize the overall performance of the class on the test, we 
commonly calculate the mean and the standard deviation of the scores.  However, these 
measures assume that the underlying probability distribution function (pdf) is a true 
Gaussian: 
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The maximum amplitude of the distribution is such that the area under the curve from 
x = −∞  to x = +∞ is exactly 1.  But on a test where the score is out of 100% and the 
distribution is bell-shaped, the actual pdf is closer to: 
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where the amplitude so the total area under the curve is 1 is: 
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and erf is the error function: 
 

 erf(z) ≡ 2
π

e− t
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0

z

∫ dt                                                  (4) 

 
For gaining a rough idea of how a class performed on a test, the difference between Eqns. 
1 and 2 can usually be ignored.  But to compare the size of the performance difference of 
two or more groups of students, such as by gender or some other factor, we will show that 
the difference between Eqns. 1 and 2 can be significant. Such comparisons are central to 
much science education research, but are also useful for classroom teachers; a recent 
example is a comparison of evaluation results over a 13 year span for a teacher who 
changed her pedagogy during that period.2 
 
If we take Eqn. 2 to be a model of student performance, than we wish to determine the 
value of x , σ ,  and the uncertainty in x . 
 
Here we explore the differences between these 2 pdf’s.  Nassim Nicholas Taleb has 
written passionately about how assuming a normal distribution often leads to catastrophic 
mistakes because that distribution under-estimates the number and impact of outliers.3  
He calls these outliers black swans.  The effects we shall discuss are much less dramatic, 
and we call their causes gray swans. Although the discussion doesn’t introduce anything 
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that is very new, it is apparent from reading journals devoted to science education 
research that the issues that are discussed are not as well known as they should be. 

II.	NON-INFINITE	CLASS	SIZES	
 
For data whose pdf is a true Gaussian, Eqn. 1, any finite number of data points N is just a 
sample and the mean and standard deviation can only be estimated. 
 

xest =
xi

i=1

N

∑
N

σ est =
xi − xest( )2

i=1

N

∑
N −1

                                                 (5) 

 
The statistical uncertainty in the value of xest  is estimated by the standard “error” of the 
mean Δxest =σ m =σ est / N . The uncertainty in the value of estimated standard 
deviation Δσ est =σ est / 2N − 2 . 
 
For a test whose pdf is given by Eqn. 2 with x = 75  and σ = 15 , we imagine a multiple-
choice format consisting of 20 questions, each worth 5 points with no partial grades 
given.  Then a Monte Carlo (also known as a random variate) procedure for a class of 
100 students gave the grade distribution shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 2. A Monte Carlo generated grade distribution. 
 

Blindly applying Eqn. 5 to this distribution gives xest = 73.4  and σ est = 13.3 , so 
xest = 73.4 ±1.3 . The median of the distribution is m = 70.0.  The uncertainty in the 
median is discussed in Section IV below. 
 
Mathematically, the expected value of the mean, which we call xexpected , is given by: 
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The general solution to Eqn. 6 is mathematically very complicated, but for x = 75  and 
σ = 15 , xexpected  = 73.43. 
 
We can also perform a least-squares fit of a Gaussian to the distribution of Fig. 2 using a 
Levenberg-Marquardt algorithm. Taking the uncertainty of the number of students in 
each bin to be the square root of that number,4 the result of the fit is xfit = 73.3±1.5 , 
σ fit = 12.2 ±1.3 , with χ 2 = 16.2  for 11 degrees of freedom. The maximum amplitude 
of the Gaussian is 13.8 ± 2.0 . The stated uncertainties are from the diagonal elements of 
the covariance matrix of the fit. Figure 3 shows the result. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3.  Fitting the distribution of Fig. 1 to a Gaussian. 

 
So all three methods of trying to determine x , using Eqn. 5 on the data, integrating Eqn. 
2, and fitting the data to a Gaussian, gave values lower than the actual value of 75. 
 
One well-known problem with the mean is that a single outlier datapoint can seize 
control. For example, if we have a class of 5 students who take the 20-question test we 
have been describing, the grades could be (75, 80, 75, 30, 70).  For this distribution, the 
mean is 66.  The grade of 30 is a black swan. The median is “robust” for the presence of a 
few black swans; for this data the median is 75.0. 
 
Standard least-square regression algorithms for fitting data to a model have the same 
problem with black swans and for the same reason.  As Emerson and Hoaglin point out: 
 

Various methods have been developed for fitting a straight line of the form 
 

 y = ax + b   
 
to the data (xi,  yi), i = 1,…,n. The best-known and most widely used method is 
least-squares regression, which involves algebraically simple calculations, fits 
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neatly into the framework of inference built on the Gaussian distribution, and 
requires only a straightforward derivation. Unfortunately, the least-squares 
regression line offers no resistance.  A wild data point can easily seize control of 
the fitted line and cause it to give a totally misleading summary of the relationship 
between y and x.5 

 
Figure 4 shows the result of fitting two synthetic datasets to a straight line; the datasets 
were devised by Anscombe.6  In both cases a single wild datapoint has seized control of 
the fit. 
 

 
 
 
 
 
 
 
 
 

  (a)       (b) 
Figure 4. Fitting two datasets, each with an outlier, to a straight line. 

 
 
The fits shown in Fig. 4 illustrate the importance of visual representations of the data. For 
both fits the intercept is 3.0 ±1.1  and the slope is 0.50 ± 0.12 . The sum of the squares 
of the residuals are 13.7562 and 13.7425 respectively and both fits have 9 degrees of 
freedom. So just looking at the numbers, one could conclude that the datasets are very 
similar. However, the plots make it obvious that the datasets are quite different. 
 
If Jeff Bezos walks into a bar, the mean wealth of the bar’s patrons immediately goes up 
by several billion dollars, although no non-Bezos drinker is any richer: in terms of the 
mean wealth Bezos is a black swan.7 Even without black swans, for datasets with long 
tails the data in those tails are what we are calling gray swans, which can skew the value 
of the mean.  That is why, for example, in describing the typical income of a sample 
population the median is preferred.  Figure 5 illustrates for weekly income in the United 
Kingdom for 2009-2010.8 
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Figure 5.  Income per week in the UK in 2009 – 2010. 
 
For both black and gray swans, a common technique is to use a trimmed mean, which 
removes the largest and/or smallest values before calculating the mean.  For the test 
results shown in Fig. 2, a reasonable way for forming such a dataset is to remove the tail 
for low grades by defining: 
 

 δ ≡ 100 − xest                                                     (7) 
 
and then removing all grades from the dataset less than: 
 

 xest −δ = 2xest −100                                               (8) 
 
For the data shown in Fig. 2, this eliminated the 3 lowest of 100 grades, which raised the 
calculated mean from 73.4 to xtrimmed = 74.4 .  It also raised the median from 70.0 to 75.0, 
but lowered the calculated standard deviation from 13.3 to σ trimmed = 12.2 . 

III.	A	COURSE	WITH	1000	IDENTICAL	SECTIONS	
 
We used a Monte Carlo method to generate 1000 instances of grades on the 20-question 
multiple choice test already discussed, each with 100 students.  This could correspond to 
a course with 1000 sections of the course with the 100 students in each section being 
statistically the same, and with the same instructor using the same pedagogy for each 
section. For each section we calculated xest , xtrimmed , the median m, and σ est . Figure 6 
shows the histograms of these values. The vertical red lines in Figs 6(a), 6(b), and 6(c) 
are the value of x = 75 , and the vertical red line in Fig 6(d) is the value of σ = 15 . 
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        (a)              (b) 
	
 
 
  
 
 
 

    (c)      (d) 
Figure 6.  1000 sections each with 100 students for the 20-question multiple-choice test.  

(a) xest (b) xtrimmed  (c) m (d) σ est . 
 
Note that the median m = 70 < 75 for the data of Fig. 2 is due to sampling errors and the 
gray swans in the tail for lower grades.  In general the median is resistant to such swans: 
almost 80% of the values in Fig. 6(c) are exactly 75.0 
 
The spread of values in Fig. 6 is inversely related to the number of students in each 
section. Figure 7 shows the result of the same calculation for 1000 sections, but with each 
having 1000 students.  The histogram of the median is not shown since all 1000 values 
were exactly 75.0.  
 
 
 
 
 
 
 

       (a)      (b) 
 
 
 
 
 
 
 
 

(c) 
 

Figure 7  1000 sections each with 1000 students for the 20-question multiple-choice test.  
(a) xest (b) xtrimmed  (c) σ est . 
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IV.	MORE	ABOUT	THE	MEDIAN	
 
We can define the quartiles for a distribution so that 25 % of the distribution is less than 
q1, the value of the median m = q2, and 75% of the distribution is less than q3.  The 
interquartile range (IQR) is then defined as q3 – q1. 
 
We are used to characterizing the width of the distribution of grades on a test by 
specifying the grades that include the middle 68.27% of the class or the middle 95.45% of 
the class.  However, these percentages are only natural for a true Gaussian distribution 
and correspond to ranges of x ±σ and x ± 2σ respectively.  For any distribution it is at 
least as natural to characterize the width of the distribution of the grades for the middle 
50% of the class, which is the IQR.   
 
For a normal distribution with m = q2 = x = 0 , q1 = − .6745σ  and q3 = + .6745σ , so 
IQR = 1.3490σ . This value for the IQR is true for any normal distribution.  
 
Similarly, it can be shown that the area under a Gaussian between q1 −1.5 × IQR  and 
q3 +1.5 × IQR is 99.30%, which corresponds to slightly less than ±3σ .9 These values 
are taken to define cutoffs for any distribution and values outside of this range are taken 
to be outliers.10 
 
If one wishes to assign a 95% confidence level statistical uncertainty to the value of the 
median, similar to 2 ×σ m = 2 ×σ / N for a normal distribution, a heuristic expression is 
1.58 × IQR / N .11  Thus the value of the median is m ±1.58 × IQR / N .   
 
The value of 1.58 in the above expression is a compromise. Uncertainties are commonly 
used to decide if the medians for two or more groups are the same or are different.  As 
discussed in Section 7 of Ref. 11, if the widths of the distribution of values in the groups 
are vastly different, a value of 1.81 would be appropriate.  If the widths are roughly 
equal, 1.81 results in a test that is far too stringent; in this case a value of 1.28 is more 
appropriate. The value 1.58 is an empirically selected compromise between 1.28 and 
1.81, and has been widely adopted.  However in specific circumstances some of other 
value could be more appropriate. 
 
An alternative method of estimating uncertainties is based on Monte Carlo methods, 
similar to those discussed in Section III above.12  Since many science education 
researchers do not know these methods, it is questionable whether they are worth the 
effort to learn and use.  However, they are increasingly used in the experimental physical 
sciences. 
 
For visualizing the grade distribution using quartiles and medians, the boxplot is very 
useful. It was invented by John Tukey.13 Figure 8(a) is the boxplot for the grades shown 
in Fig. 2. The “waist” on the boxplot is the median, the “shoulder” is the upper quartile, 
and the “hip” is the lower quartile.  The vertical lines extend to the largest/smallest 
datapoint value less/greater than the cutoffs defined above. The dot is a datapoint outside 
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the cutoffs and is therefore considered to be an outlier. The “notch” around the median 
value represents the statistical uncertainty in the value of the median, which as discussed 
above, is ±1.58 × IQR / N . For this data, the uncertainty is equal to ±2.4 . The value 
the median, then, is 70.0 ± 2.4 which is not within uncertainties of x = 75.0 . 
 
 
 
 
 
 
 
 

 
 
 

 
             (a)      (b)  

Figure 8. (a) Boxplot of the test grades shown in Fig. 2. (b) A more typical distribution 
 

Although the median is resistant to swans, it is not immune.  As discussed, in the 
simulated 1000-section course with each section having 100 students, just over 20% of 
the sections did not have a median grade exactly equal to 75.0.  Figure 8(b) shows a more 
typical grade distribution for another section of this simulated course.  The median in this 
case is 75.0 ± 3.3 . 

V.	A	Real-World	Example	
 
So far, we have only used simulated test grades. Figure 9 shows the actual grade 
distribution for the first term test of an 800-student introductory physics course for life 
science students for three categories of students. What those categories are is not 
important for our purposes, but they are for three different measured personality types.14 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Boxplots of test grades for three categories of students. 
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Also shown as dots within each “box” are the values of the mean of the grades, and the 
“error” bars are σ m =σ est / N . Table I shows the values of the median, the mean, and 
the trimmed mean. When comparing the given uncertainties in the table for the median 
and the mean, recall that the uncertainty in the median corresponds to twice the 
uncertainty in the mean. 
 

Table I. Median, mean, and trimmed mean of test grades for three categories of students. 
 

Category Median Mean Trimmed Mean 
Blueβ 71.4 ± 3.5  68.0 ±1.4  75.0 ±1.1 
Cyanβ 75.0 ± 3.0  71.4 ±1.3  77.4 ±1.0  
Greenβ 85.7 ± 2.3  78.3±1.1  82.1± 0.9  

 
The boxplots for all three categories are asymmetric about the median. The asymmetry is 
largest for the distribution on the right, which also has a number of outliers.  The effect of 
these asymmetries and outliers is to lower the mean compared to the median, and this 
lowering is largest for the distribution on the right. 
 
For comparing groups of students, such as the study that generated Fig. 9, we wish to 
compare performance of the groups. Measuring performance using the mean instead of 
the median tends to reduce the differences, which we believe is because the mean is not 
as appropriate as the median. In Ref. 14 we only report the medians and their 
uncertainties. 
 
Using the trimmed mean reduces the difference between categories even more; we only 
included this column in the table for completeness. In this this case we don’t know how 
to interpret the values. In general procedures that throw out data are dangerous, and 
should be avoided whenever possible 

VI.	DISCUSSION	
 
For a grade distribution on a test which is roughly bell-shaped and whose histogram 
shows a maximum at around 50% and with negligible students with grades close to 0% or 
100%, whether one characterizes the results by the mean or the median doesn’t make any 
appreciable difference.  However, we have shown that if the distribution has a maximum 
value that is appreciably greater than 50%, the standard way of characterizing the 
distribution using xest  and σ est  gives values that are too low.  If the maximum value is 
appreciably less than 50%, the cutoff for grades < 0 means that the value of xest  will be 
too high, although σ est will also be too low.  If we compare two groups, one with a 
maximum much greater than 50% and the other with a maximum much less than 50%, 
we have the worst of both worlds and the difference in performance as measured by 
means can be significantly less than is actually the case. Although these biases are due to 
gray swans and not catastrophic, they nonetheless can obscure the reporting of results in 
the context of education research. 
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We have introduced a method for trimming the data that largely eliminates the biases in 
calculating a value for the mean. However, the method still underestimates the value of 
the standard deviation, which in turn underestimates the value of the uncertainty in the 
mean. It also reduces the measured difference between different categories of students. 
As mentioned, we think this procedure should be avoided. 
 
For distributions that are not bell-shaped, such as typical results on the conceptual 
assessments like the Force Concept Inventory15 or many regular class tests, characterizing 
the distribution with robust measures such as the median and the interquartile range is 
necessary. We have shown that even for bell-shaped distributions, these measures are 
usually preferable to ones that assume a normal distribution because of the cutoffs for 
grades less than 0% or greater than 100%. 
 
In some sense all tests are a ranking exercise: we are attempting to sort students by their 
knowledge as demonstrated on the test.  Providing feedback to the students on how they 
are doing compared to their classmates is an important way for students to assess how 
they are doing, and students take these numbers very seriously.  But we have shown that 
the calculated mean and standard deviation of the test are somewhat misleading.  In 
addition, beginning students struggle to understand what the standard deviation means. 
Giving the median and the quartiles gives students a more accurate and easier to interpret 
picture of how they rank. 
 
For deeper analysis, one often calculates the Pearson correlation coefficient for results of 
individual questions compared to the overall performance on the test. However, this 
coefficient assumes a normal distribution. The Spearman correlation coefficient does not 
make this assumption, and is therefore preferred.16 
 
For comparing two grade distributions, which is common in education research, one often 
uses the well-known Student’s T-Test.17  However, this too assumes that the distributions 
are normal. Two alternatives are the Mann-Whitney U-Test18 and an extension, the 
Kruskal-Wallis one-way analysis of variance.19 Both of these are based on the median, 
not the mean. Both typically return p-values, which are interpreted identically to the p-
value of Student’s T-Test. But, they both assume that the distributions have the same 
shape and differ only in the value of the medians.20   
 
However, there is a growing realization that blindly relying on p-values, typically 
choosing a value of 0.05 to decide whether or not two distributions are the same or are 
different, can lead to erroneous conclusions.21  Thus the phrase “p hacking” as a 
pejorative is in growing use, and a growing number of researchers in many fields, both in 
the physical and the social sciences, are refusing to calculate or report p-values. 
 
Instead of or in addition to p-values, many are now calculating effect sizes.22  However, 
one of the most common effect sizes seen in the literature seems to be Cohen’s d, which 
assumes a normal distribution of the two samples.23  Cliff’s δ  makes no such 
assumption.24 
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VII.	CONCLUSION	
 
Methods of analyzing tests or other assessments assuming a normal distribution are well 
known.  However, this appears to us to be their only virtue.  We have shown that methods 
based on robust measures such as the median are resistant to both black and gray swans, 
and avoid the biases inherent in assuming normal distributions when the grades are 
constrained to be between 0 and 100%. These methods are readily available for most 
common software. We can think of no circumstance where assuming a normal 
distribution and using the methods based on this assumption is preferable to using robust 
measures. 
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