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INTRODUCTION

The use of computers to fit experimental data is probably the application that
Is used more than any other in computational physics. A whole course could easily
be designed that would cover this topic alone.

This document and the accompanying experiment on fitting techniques only
‘scratch the surface’. One source for further information is the Mathematica note-
books that accompany the Experimental Data Analyst (EDA) package. These note-
books are available on-line in the mat h* EDA' Not ebooks directory; David
Harrison also has a hardcopy version. Of particular interest in the context of fitting
of data are Chapters 4 through 7.

Usually when one is fitting data, a theoretical model is present and the ana-
lyst is attempting to determine either how well the data matches the model or what
the values are for the parameters of the model. One of the simplest and most com-
mon of such cases is when one is fitting data to a straight line and attempting to
determine the slope and intercept of the line.

There are also cases where one is fitting data in the absence of a theoretical
model. This is often called nonparametric fitting, and will not be discussed here.

We concentrate below on fitting using least-squares regression. Although
least-squares is the most commonly used algorithm it is not without some difficul-
ties, particularly when the data is noisy.

As will be seen, a crucial distinction is between fitting to a linear model ver-
sus a nonlinear model.

These notes are organised as follows:
I. Linear fits.
A. Least-squares regression.
B. Fitting to data with experimental errors.
C. Evaluating the goodness of a fit.
D. Reweighting Data That Have No Explicit Errors

Il. Nonlinear fits.



The Levenberg-Marquardt algorithm.

Initial values of the parameters.
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Errors in both data coordinates.

D. Reweighting
I1l. References.
Note that the usual listing of the code you will be using in the experiment is miss-
ing from these notes. This is because their size is large (nearly 1600 lines for the
linear fitter alone, not including subsidiary routines). Students who wish to take a
look at the code may contact David Harrison.

I. LINEAR FITS

This chapter discusses fitting data to linear models. Calling the dependent
variable y and the independent one X, a general representation of such a linear
model f(x) can be given:

y=f() = 3 ag X(X) (1.1)
k=0

Here the ay are the parameters to be fit, and X (x) are called the basis func-
tions.

By far the most common choice of basis functions are polynomials. Imagine we
are trying to fit y versus x to a straight line.

Yy =ag taX (1.2)

We are trying to determine the intercept ay and the slope a1, and the two
basis functions are 1and x.

Imagine we are fitting the data to a second-order polynomial.
Y =Qg +a1x+a2x2 (|3)

This is a linear fit, and the techniques discussed in this section may be used.
The fact that the basis functions are not linear has no relevance in this context.

Imagine we are fitting to an exponential.
y=a;e o2 (1.4)

This is not a linear fit, since the parameter a, is nonlinear. Note that, in this
example, the relationship can be made linear by transforming.



In(y) =In(a;) —ayx (1.5)
Writing a' = In (a1) makes the relation a bit clearer.
In(y) =a" —ajyx (1.6)

Thus, fitting the logarithm of yversus x to a straight line effectively fits to the
original equation and is linear. A small point about this sort of transformation is
that it introduces biases into the parameters but often those biases can be ignored;
this is discussed in, for example, § 8.2 of the EDA manual.

Imagine we are fitting to a more complex exponential.
y =a;e o +asx (1.7)

There is no simple transformation that will linearize this form. The techniques dis-
cussed in the next section on nonlinear techniques are required.

I.LA Least-Squares Regression

The standard technique for performing linear fitting is by least-squares, and
this section discuss that algorithm.

However, as Emerson and Hoaglin® point out, the technique is not without
problems.

Various methods have been developed for fitting a straight
line of the form:

y = a + bx to the data xi,yi, i = 1,...,n.

The best-known and most widely used method is least-
squares regression, which involves algebraically simple
calculations, fits neatly into the framework of inference
built on the Gaussian distribution, and requires only a
straightforward mathematical derivation. Unfortunately,
the least-squares regression line offers no resistance. A
wild data point can easily seize control of the fitted line
and cause it to give a totally misleading summary of the
relationship between y and x.

1. John D. Emerson and David C. Hoaglin, "Resistant Lines for y versus x", in David C. Hoaglin,
Frederic Mosteller, and John W. Tukey, Understanding Robust and Exploratory Data
Analysis (John Wiley, 1983, ISBN: 0-471-09777-2), pg.129.



The central idea of the algorithm is that we are seeking a function f(x) which
comes as close as possible to the actual experimental data. We let the data consist of
N {x,y} pairs.

data =(X1,Y1), (X2,¥2), - (Xn,YN) (1.8)

Then for each data point the residual is defined as the difference between the
experimental value of y and the value of y given by the function f evaluated at the
corresponding value of x.

residual; = y; — f (Xj) (1.9)

First, we define the sum of the squares of the residuals.

N
SumOfSquares= Y residual? (1.10)
i=1
Then the least-squares technique minimizes the value of SumOfSquares.

Here is a simple example. Imagine we have just a succession of x values,
which are the result of repeated measurements.

(X1,X2, """ ,XN) (1.11)

We wish to find an estimate of the expected value of x from this data. Call that
estimated value X. Then symbolically we may write the sum of the squares.

N
SumOfSquares = ¥ (X - x;)? (1.12)
i=1

For this to be a minimum, the derivative with respect to X must be zero:

N
dSumOfSquares =25 (X-x)=0
dx i=1
N p—
S(X-x;)=0
i=1
We write out the sum.
(X—x1) + (X=X2) + - -+ +(X—xn) =0
We solve for xbar.
)_(:(X1+X2+ +XN)/N (|13)

But this is just the mean (i.e., average) of the x; . The mean has no resistance and a
single contaminated data point can affect the mean to an arbitrary degree. For
example, if X, goes to «, then so does x . It is in exactly this sense that the



least-squares technique in general offers no resistance.

Usually we are fitting data to a model for which there is more than one
parameter.

y =aoXg(X) +aiX1(X) + -+ +amXm(x) (1.14)

The least-squares technique then takes the derivative of the sum of the
squares of the residuals with respect to each of the parameters to which we are fit-
ting and sets each to zero.

0 SumOfSquares

=0
dag
0 SumOfSquares _
=0
daq
(1.15)
0 SumOfSquares _
=0
day

The analytic solution to this set of equations, then, is the result of the fit. Of
course, one good way to solve these equations is by using the techniques of solving
systems of linear equations that you studied in the Exercise.

If the fit were perfect, then the resulting SumOfSquares would be exactly zero.
The larger the SumOfSquares, the less well the model fits the actual data.

I.B Fitting to Data with Experimental Errors

In an experimental context in the physical sciences almost all measured quan-
tities have an error because a perfect experimental apparatus does not exist.
Nonetheless, all too often real experimental data in the sciences and engineering do
not have explicit errors associated with the values of the dependent or independent
variables. In this case the least-squares fitting techniques discussed in the previous
subsection are usually what are used.

If there are assigned errors in the experimental data, say erry, then these
errors are used to weight each term in the sum of the squares. If the errors are esti-
mates of the standard deviation such a weighted sum is called the "chi squared" ( x?
) of the fit.



, _ N Dresidual; Ej
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X (1.16)
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The least-squares technique takes the derivatives of the x? with respect to the
parameters of the fit, sets each equation to zero, and solves the resulting set of
equations. Thus, the only difference between this situation and the one discussed in
the previous sub-section is that we weight each residual with the inverse of the
error.

2
0 X -0
dag
2
0 X -0
daq
(1.17)
2
0X -0
day

Note that finding the solutions to both Equation 1.15 of the previous sub-sec-
tion and Equation 1.17 are analytic, and can be solved using the techniques of the
Exercise.

Some references refer to the weights w; of a fit, while others call the errors
erry the standard deviation o .

w; = 1/erry? = 1/0°

Also, some people refer to the "variance", which is the error or standard deviation
squared.

If the data has errors in both the independent variable and the dependent one,
say errx and erry respectively, then a common procedure is to use what is called an
effective variance technique. The idea is fairly simple: the error in the dependent
variable y is considered to have two components, one the explicit error erry and the
other due to the error errx in the independent variable x. If errx is small, its contri-
bution to the error in y is approximately:

df (x)
dx
In the usual case, it is reasonable to assume that these two contributions to

the error in y are independent. Thus the effective error in y is found be combining
these two terms in quadrature:

errx



B 0.5
erryes B Brry? + (M errx)?0] (1.18)
O dx O
There are subtleties in which value of x should be used in evaluating the slope
df(x)/dx.?

In addition, it is fairly simple to show that unless the model f(x) is a straight
line then Equations 1.17 are not linear. Thus, in general when the data have expli-
cit errors in both coordinates the least-squares technique must iterate to a solution.

I.C Evaluating the Goodness of a Fit

As already mentioned, when the data have no explicit errors the SumOfS-
guares statistic measures how well the data fits to the model. Although a smaller
SumOfSquares means a better fit, there is no apriori definition of what the word
"small" means in this context. In many cases, analysts will use confidence intervals
to try to characterize the goodness of fit for this case. There are many caveats to this
approach, some of which are discussed in § 8.2.1 of the EDA manual. Nonetheless,
the Statistics’ Confidencel nterval s* package, which is standard with
Mathematica, can calculate these types of statistics.

When the data have errors, the ChiSquared statistic does provide information
on what "small" means because the data is weighted with the experimenter’s esti-
mate of the errors in the data.

The number of degrees of freedom of a fit is defined as the number of data
points minus the number of parameters to which we are fitting. If we are doing, say,
a straight line fit to two data points, the degrees of freedom are zero; in this case,
the fit is also fairly uninteresting.

If we know the X2 and the DegreesOfFreedom for a fit, then the x? probability
prob can be defined:

[ (DegreesOfFreedom/2,x%/2)
IM(DegreesOfFreedom/2)

prob =100 (1.19)

where:

2. M. Lybanon, Amer. Jour. Phys. 52 (1984), 22 - 26.
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The meaning of the x? probability prob is that it is the probability in percent
that a repeated experiment will return a chi-squared statistic greater than x>.

The interpretation of this statistic is a bit subtle. We assume that the experi-
mental errors are random and statistical. Thus, if we repeated the experiment we
would almost certainly get slightly different data, and would therefore get a slightly
different result if we fit the new data to the same model as the old data. The X2
probability, then, is the chance that the fit to the new data would have a larger x?
than the fit we did to the old data.

If our fit returns a x? of zero, then it is almost a certainty that any repeated
measurement would yield a larger X?; in this case the probability as defined by
Equation 1.19 is 100%. Such a ‘perfect’ fit is essentially too good to be true.

As the x? increases from zero, the probability decreases. It will be important
for you to convince yourself that the ideal result of a fit to data is one in which the
X2 probability is 50%.

If the probability is much greater than 50%, then the fit is too good; this can
arise, for example, if the declared errors in the data are too large. If the probability
Is much less than 50%, then the fit is poor; this can indicate that the data does not
really fit the model being used.

That said, say we have good data including good estimates of its errors, and
we are fitting to a model which does match the data. If we repeat the experiment
and the fit many times and form a histogram of the x? probability for all the trials,
it should be flat; we expect some trials to have very small or large probabilities even
though nothing is wrong with the data or the model. Thus, if a single fit has the chi-
squared probability that is very large or very small, perhaps the statistics "con-
spired" and there is nothing wrong with the data or the model. In this case, how-
ever, repeating the measurement is probably a good idea.

Despite these limitations, statistical analysis is useful. However, you will dis-
cover in the experiment that graphical analysis of fits is sometimes even more
important. In a sense, this lesson leads to the motivation for the experiment on
visualisation of data that you will be doing later in the term.



I.D Reweighting Data That Have No Explicit Errors

When the data have no explicit errors, the linear fitter you will use in the
Experiment by default reweights the data.

If we assume that the scatter in the data points is random and statistical then
it is reasonable to assume that the error in the dependent variable, PseudoErrorY,
IS given by:

PseudoErrorY =vSumOfSquares/DegreesOfFreedom

Thus, we reweight the data by dividing the residuals by this "fake" error when we
form the sum of the squares.

The x? calculated using this scheme is always equal to the degrees of freedom
of the fit, and therefore is not of use in evaluating the goodness of the fit.

The value of PseudoErrorY is sometimes of interest, and is returned by the
fitter you will use in the experiment.

For linear fits, the reweighting only changes the estimates in the errors in the
parameters to which we are fitting: the values of those parameters is not effected.

Experience has shown that for most experimental data in the the sciences and
engineering, reweighting of data is reasonable. Of course, it would be better if the
experimentalist had estimated errors when the data were taken.

I1. NONLINEAR FITS

The previous section introduced the distinction between linear and nonlinear
models. To briefly review, the terms refer to the way in which the parameters to
which we are fitting enter into the model. In this section we discuss nonlinear mod-
els.

A common use of nonlinear fitters is fitting, say, a nuclear spectrum to a Gaus-
sian plus, say, a linear background. We have a number of counts from a multichan-
nel analyzer as a function of the energy E.

2 21
counts =ag + a.E + aze'%aa'E) /(2a1)g (11.1)

Here the background has an intercept ag and slope a1, the Gaussian peak has an
amplitude of a,, maximum at az and standard deviation a,4.

Recall that if the data do not contain explicit errors, then we solve the simul-
taneous equations given by Equation 1.15; if the data contain explicit errors we
solve Equation 1.17. This in general can be done analytically provided the model to
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which we are fitting is linear in the parameters.

For a nonlinear fit, no such analytic solutions are possible, so iteration is
required to find the minimum in the sum of the squares or the chi-squared. linear
fitting.

A subtle question is deciding when the iteration has gotten close enough to the
answer.

If the data has noise, which is almost a certainty for real experimental data,
then there is a further difficulty. We can take two sets of data from the same appa-
ratus using the same sample, fit each dataset to a nonlinear model using identical
initial values for the fit parameters, and get very different final fits. This situation
leads to ambiguity about which fit results are "correct.”

I1.LA The Levenberg-Marquardt Algorithm

If we imagine a plot of the value of the sum of the squares or the x? as a func-
tion of the parameters to which we are fitting, in general for a nonlinear fit there
may be many local minima instead of one big one, as is the case for a linear model.

The general technique for iteration, "steepest descent”, is analogous to the fol-
lowing situation. It is "a dark and stormy night." Foggy too. You are on the side of a
hill and want to find the valley. So you step in the direction in which the slope goes
down, and continue moving in the direction of the local definition of "down" until
you are in the valley. Of course, if you take giant steps you might step over the next
hill and end up in the wrong valley. And when you get close to the bottom of the
valley you will want to start taking baby steps.

Similarly, to do a nonlinear fit we must find the "valley" in the plot of the
SumOfSquares or X2 versus the parameters to which we are fitting. The Leven-
berg-Marquardt algorithm used by many nonlinear fitters is essentially some clever
heuristics to define giant steps and baby steps in the steepest descent method. Fur-
ther details can be found in the references.

11.B Initial Values of the Parameters

As we stated the previous sub-section, there can be many local minima in the
SumOfSquares or X2. Thus, it is easy for a nonlinear fit to fall into the wrong mini-
mum, giving a totally wrong answer.

The solution is to provide initial estimates of the parameters to a nonlinear
fitter, and in general you will discover this to be necessary. If these estimates are
poor, one possibility is that the fitter will fall into the wrong minimum. Another
possibility is that the fitter will iterate in a direction away from any minimum and
"wander in the wilderness" until it is stopped. Thus, a well designed nonlinear
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fitter will set a maximum to the number of iterations it will perform before abort-
ing.

For the case of, say, nuclear spectra with multiple overlapping peaks, this esti-
mation can become difficult. Despite the claims sometimes seen in glossy advertise-
ments, there is no known software that can find and estimate peaks for data such
as this as well as a human expert. This is in part because of the great ability of the
human visual system to be an intuitive integrator.

11.C Errors in Both Data Coordinates

Recall from the chapter on linear fitting that if the data have explicit errors in
both coordinates, the effective variance technique makes the fit essentially non-
linear unless the model is a straight line. Thus, in this case the fitter you will be
using in the experiment iterates until it finds a minimum in the x?. When there
are errors in both coordinates, the nonlinear fitter you will be using in the experi-
ment also calculates the error in the dependent variable based on the effective vari-
ance. However, although there is a fairly comprehensive literature on using this
technique in linear fits, I know of no literature about using the technique in non-
linear fits.

The main justification of using effective variances in nonlinear fits is based
only on a series of experiments done by David Harrison and former U of T Physics
undergraduate Zorawar Singh Bassi in 1996. It was found that most often the algo-
rithm would produce reasonable results.

11.D Reweighting

For linear fits, the default behavior of the fitter is to reweight data without
explicit errors by using a statistical assumption about the scatter in the data; this
was discussed in § I.D.

For nonlinear fits, reweighting can cause the value of the parameters to which
we are fitting to be changed. Thus, by default the nonlinear fitter you will be using
does not reweight such data. This behavior is controllable by an option.
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