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     I'm going to denote sinx/x as sinc(x) from now on28
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Digital Signal Processing Techniques
(An Introduction)

In the previous section we established a link between the digital techniques that we
have been using (so far only "running means") and the wider world of filters and so on.
What we did there can be derived directly from the general treatment of linear systems and
if we are to proceed any further, we must acquaint ourselves with the elements of linear
systems in the continuous time domain and in the sampled time domain.  This process gets
somewhat mathematical - indeed it can sometimes seem almost overwhelmingly mathematical
- however bear with me and we shall see the light eventually. 

We saw at the end of the last section that the sinc(x)  form we get for the analysis of28

a running mean (at least for a running mean over a large number of points so that the
transformation from a sum to and integral has some validity) is somewhat different from the
frequency response of a filter that we would get from analog design, but it is still a low-pass
filter.  This implies that we could look at a lot of digital operations on datasets as digital
filtering operations and we should look at the question of how the concepts of analog filtering
can be carried over into the digital domain.  We need to begin with a review of analog
concepts relevant to this discussion.

Linear Systems

The fundamental building block of a analog analysis techniques is the concept of a
linear system and the impulse response.

A linear system is one in which two rules apply:

1)  A given input produces a given output

2)  The sum of two inputs produces the sum of the individual outputs. Also known as the
principle of linear superposition.

(Drummond's summary: If you kick it, it screams. If you kick it twice as hard, it screams
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Linear System Response

twice as loud!)

A particular input that is often considered is the impulse function.  This is a function
which has zero width in time, infinite height, but unit area. It is the Dirac delta function.
It is of course impractical to produce delta functions, but approximations are possible which
are adequate.

The response of a system
to a inpulse function is known as
the impulse response and we will
designate that as h(t). For a
system to be causal it is required
that h(t) = 0 for t<0.  For a
system to be stable it is required
that h(t) 6 0 as t 6 4.

The fundamental concept of linear systems analysis is that the output of a linear
system can be predicted for any input if the impulse response is known.  In order to
understand this concept we realise that the input can be split up into a series of scaled delta
functions

and then by appealing to the principle of superposition we can write the output as 

or we can expresss this in integral form as:

where u = -tN.  Since we also know that h(u) = 0 for u < 0 for causal systems, we can



y(t) ' m
4

&4

x(t&u) h(u) du ' x(t) ( h(t)

y(t) ' m
4

&4

cosT(t&u) h(u) du

y(t) ' m
4

0

e jT(t&u) h(u) du

Y(T) e jTt
' m

4

0

e jTt e &jTu h(u) du

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 119

extend the integration range to ±4 without change and we recognise that the output of a
linear system is the convolution of the input with the impulse response.  This is a most
important result:

The output of a linear system is the convolution of the input and the impulse response.
Therefore the impulse response tells you everything there is to know about the linear
system.

We introduce a short-hand notation for the convolution integral as

Now let us try applying a simple sine wave cosTt to the system.

We could also have chosen sinTt as the input.  Since this is so and we can linearly
superimpose inputs, let us apply cosTt + jsinTt as the input (where j = o(-1)). This is an
unabashed fiddle to get into complex exponential notation.

Since this is a linear system we can write (at least I'm going to tell you I can write) the
output as Y(T)exp(jTt) where Y(T) may be complex.

and since the the term exp(jTt) is a constant of the integration, it can be canceled leading to
the result:
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     For those of you who know something about fourier transforms, let me point out that I am29

not going to normalise anything in what follows.  This may not be mathematically correct, but the
normalisation doesn't matter much in most cases.
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If we now back up to our original input - cosTt - and ask what is the output expressed as
something multiplied by cosTt, we find that the something is Y(T).  The modulus of this is
what we would call the "frequency response" and the argument is the "phase response".  The
integral given above is a fourier transform . So the result is:29

The frequency response of a linear system is the modulus of the fourier transform of the
impulse response and the phase response is its argument.

We introduce a shorthand notation that the fourier transform of x(t) is X(T).

Some very important properties of the fourier transform are as follows:

1)  The frequency response is always an even function of T.  This is because from the
original integral definition X(T) = X (-T) and therefore |X(T)| = |X(-T)|.  Similarly the*

phase term is an odd function of T.

2)  Delaying the time function by a finite time, T, changes only the phase response and that
by a simple time delay. (The proof is left as an exercise for the reader)

3)  The Fourier transform of the sum of two time functions is the sum of the individual
Fourier transforms.

Now let us look at a very useful theorem of fourier transforms which we shall use
extensively.  Consider the product of two fourier transforms:
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rearranging and substituting u = v - t in the inner integral we obtain:

Now change the order of the integration

and finally

which states that the product of two fourier transforms is the fourier transform of the
convolution of the two corresponding time functions.

Thus we can consider two "domains" in which to work, the time domain and the
frequency domain.  A function can be transformed from time to frequency space by a fourier
transform and back by an inverse fourier transform (I didn't prove that, but it is so).
Convolution in one domain is the same as multiplication in the other domain.

Returning for a moment to the impulse function.  Since the output of a linear system
is the input function convolved with the impulse function, in frequency space that must be
represented by the Frequency spectrum of the input multiplied by the frequency response of
the system - which sounds to be about right.

Here's an example.  Suppose we have a system whose frequency function is a
rectangle of unity height and extent T .  This represents a lo-pass filter with a "brick-wall"0

cut-off at T .  Since the frequency representation is required to be even, it must also extend0

to -T .  What is the corresponding impulse function?0

Well let's apply the inverse fourier transform to the function X(T)
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A "Brick-Wall" Filter "Brick-wall" Filter - Impulse Response

which is a sincx function.  Notice that if this really is a filter system then it is unrealistic in
that it is non-causal since h(t) … 0 for t < 0.  We could fix that if the response was exactly
zero for t < -T say, by applying a time shift of T to the impulse response.  However in this
case the response only goes to zero as t 6 4 and this is a problem.  This at least partially
explains why "brick-wall" filters don't actually exist.

Here's another example.  Consider a filter whose passband is so tight that it can be
considered to be a delta function in frequency space at frequency T .  The impulse function0

of this filter is:

which again is non-causal and extends to infinity.

Finally let us consider the transform of a regular array of delta functions at spacing
T in the time domain.  The result is:
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Sampling a Time Function

The sum is infinite for values of T = 2kB/T (k integer) and of (comparatively) negligible size
otherwise.  This may be approximated to an array of delta functions *(T±2kB/T). Thus an
array of delta functions in one domain transforms into an array of delta functions in the other
domain.

Sampling of a time function

The action of a simple
ADC is to take "spot" values of
a time function to produce a
sequence of values.  If we define

where T is the time between
samples.  We can now write the
sampled time series as:

(Notice the notation here where x[n] refers to a sample, x[t] to the sampled series and x(t)
to the original continuous time function.)

I can similarly define the discrete version of the impulse function to be:

We shall see later that, although this is a useful formal definition, it can be misleading
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to consider h[t] to be the sampled version of an analog function h(t).  However h[t] shares
with h(t) the properties that h[t] = 0 for t < 0 and h[t] 6 0 for t 6 4 for causal, stable
systems.  In real-time processing it is necessary for systems to be causal.  However when
off-line processing a stored time series, causality is not required.

We can now define the output of a sampled linear system to be the convolution of the
input with the impulse function:

This isn't really an infinite sum because of the restrictions on h[t] for causal, stable systems.

If the input function to a discrete linear system is a sampled version of the function
exp(jTt).

Using the principle of convolution the the output will be:

which is the discrete analogue of the convolution of the input and the impulse function.  This
can be written as:

Where we have introduced the discrete analogue of the fourier transform. However now let
us use an input 
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Comparison of Continuous Function and Its Sampled Form

This produces the output:

However we note that exp(2nB) = 1 for all integer n and therefore this becomes:

In other words we cannot distinguish at the output between inputs which are spaced
2B/T away from each other in angular frequency and the frequency response is also the same.
In fact since we can repetitively apply this criterion we find that the "aliasing" of frequencies
(being unable to distinguish at the output between various input frequencies) and repetition
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Reconstructed Function After DAC

of the system response occurs at all integer multiples of 2B/T.  Since the frequency response
is an even function, this further implies that the frequency response looks as shown in the
accompanying diagram - even about the origin and repeating with a period of 2B/T in angular
frequency, 1/T in linear frequency.

Another way of deriving this would be to say that the sampled time series is the
product of the continuous time function and an array of delta functions.  Therefore the
frequency domain representation must be the convolution of the transforms of the two
functions - the transform of the original time function and the transform of a regular array
of delta functions, which is itself a regular array of delta functions in the frequency domain.

If any input above B/T in angular frequency is passed through the system, then it will
also appear as another frequency in the range 0 6 B/T.  In linear frequency terms this states
that the system frequencies must be limited to f < 1/(2T) or that input frequencies must be
sampled at least twice per cycle.

This is the sampling or Nyquist criterion which states:

The highest frequency present in the system must be sampled at least twice per cycle.

The limiting frequency of 1/2T where T is the sampling time is often called the Nyquist
frequency.

The other properties of the fourier transform mentioned above for the continuous case
are unchanged: The transforms are even, additive and a time delay in the time domain causes
only a difference in the phase term.  It is also true that convultion in one domain is the same
as multiplication in the other domain.

Interpolation

Now let us consider some more serious
issues.  Suppose that we take a sampled series
and pass it through a DAC to retrieve a
continuous function again.  We can assume for
a moment that the DAC is perfect, "glitchless"
and infinitely fast.  The output of the DAC
consists of a series of levels which change at a
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Effect of DAC on Sampled Waveform

rate equal to the series sampling rate.  In fact with a bit of thought we realise that the output
of the DAC can be thought of as the sampled series convolved with a square pulse of unit
height whose width is the sampling time.  Now convolution in the time domain is equivalent
to multiplication in the frequency domain so the frequency content of the output is the
product of the fourier transforms of the two functions.  The time series has a fourier
transform which is even and repeats with a frequency of the inverse of the sampling rate. The
pulse has a transform of sinc(B/T) with a zero at 1/T in linear frequency. The result is as
shown in the diagram.

This has significant implications for a DAC signal as the output will contain aliased
frequencies since the cut-off is not at all sharp after the Nyquist frequency.  There is also a
problem in that the curve also attentuates higher frequencies in the non-aliased part of the
spectrum - it acts as a filter.

Now let us consider a fairly radical step.  We will take the time series and double its
rate - ie halve the sampling time.  We will need to insert a number between every pair of
samples to do this and temporarily we will select the number zero.  We will first need to find
the frequency spectrum of the new time series.
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We can do this conceptually by multiplying the time series by another time series
which is an array of delta functions of interval T/2.  This has a fourier transform of an array
of delta functions at intervals of 2/T in linear frequency and multiplication in the time domain
implies convolution in the frequency domain.  The resulting frequency plot is exactly the
same as the fourier transform of the original time series - but the Nyquist and sampling
frequencies are twice as high.

Now if we pass this time series through the DAC the result will be worse than before
because the convolving pulse will result in a first zero at 2/T which passes more of the
aliased stuff through.  We need to do something about those zeros.

Suppose we pass the time series through a "filter" which replaces each zero with the previous
value.  This is equivalent (apart from a time delay which we can ignore) to the impulse
function:

         h[0]  =  1
         h[1]  =  1

with all other terms 0. This looks like a pulse function for which the  fourier transform
would be sincx - exactly the same as the original pulse.  However this is a sampled system
and we need to get the sampled for of the fourier transform.  The fourier transform in this
case is:

The modulus of this is:

which is even in T and repeats with linear frequency 2/T - as you would expect
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We finally have to account for the fact that the DAC is still going to hold the value
between samples which gives a sincx response appropriate to a sampling rate of T/2.  If we
multiply the two "filters" together we find that the effect of both operations is actually to
return the system to the performance of the the original series sampled at 1/T - a long way
around to get nowhere!

However suppose that instead of replacing each pulse by the previous one, we linearly
interpolate between the pulses.  This is equivalent (apart from a time delay again) to the
impulse function

         h[0] = 0.5
         h[1] = 1.0
         h[2] = 0.5
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     This is sometimes called "oversampling" in the audio world - we have been discussing 2x30

oversampling.
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Interpolation Filter compared with "Hold" filter

With all other terms zero.  This is a triangle function and has a fourier transform of

If we  compare the result graphically with the previous filter (replace zeros by last
value) we can see a distinct improvement in the suppression of the higher frequencies - we
are now improving things over the simple circuit.

Now all the mathematics here has been done for simply one sample inserted between
each sample of the function.  It is evidently possible to add more samples - in which case
there is more scope for filtering the output by the form of the reconstruction of the
intermediate samples .30


