
PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 11

Representing Things With Bits

Introduction

I said above, that what a bit pattern meant depended upon the context. We often want to
represent things like characters and numbers in a bit pattern so that we can conveniently store,
manipulate and retrieve them from a computer system. To do that we must have some agreed way
of encoding these entities in bit patterns. This section discusses some of the possibilities.

Character Codes

The easiest example of encoding to start with is the example of text characters (English
ones!). In order to encode these we need to encode upper case (26), lower case (26), digits (10),
brackets and punctuation (20) and odd bits (33). The total of "printable" characters is 95 or
thereabouts (depends what you encode under "odds") plus some "unprintable" or control characters
(e.g. "space", "carriage return", "line feed") and so on. This conveniently brings the total to 128
(actually the total has to be 2) which form a "7-bit code" (2 = 128). The most common 7-bit coden 7

is ASCII which stands for "American Standard Code for Information Interchange". If you add parity
to ASCII it becomes an 8-bit code.

For example:

Character 7-bit ASCII 7-bit ASCII + odd parity

T 54(h) 1010100(b) 54(h) 01010100(b)

h 68(h) 1101000(b) 68(h) 01101000(b)

e 65(h) 1100101(b) D5(h) 11100101(b)

If you want to use more than 128 things, then you need an 8-bit code of which "EBCDIC"
(Extended Binary Coded Decimal Interchange Code) and the "IBM Character Set" used in PCs are
the prime examples.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 12

For example:

Character EBCDIC

T E3(h) 11100011(b)

h 88(h) 10001000(b)

e 85(h) 10000101(b)

If you want to encode fewer things then you can use fewer bits. For example "Baudot code"
uses five bits to represent text. Those of you who are astute will realise that this isn't enough to get
even upper case + figures encoded (26 + 10 > 32) so there are a couple of "shift" characters which
are used to change the representation of all subsequent text until an "unshift" appears. This is exactly
the same as a "caps lock" on a typewriter. You obviously keep your commonly used characters in
the unshifted set and then put the rarer ones in the shifted set.

For example:

Character 5-bit BAUDOT Comment

A 03(h) 00011(b)

N 0C(h) 01100(b)

S 05(h) 00101(b)

1B(h) 11011(b) shift to FIGS

= 1D(h) 11110(b)

1 17(h) 10111(b)

1F(h) 11111(b) shift to LETTERS

V 1E(h) 11110(b)

One further thing to note about codes is "distance". If a character goes wrong then it
probably isn't too serious. Txis sextence is readaxle exen txouxh some of txe letxxrs axe gxrbled.
However numbers are non-negotiable. Therefore in the "best" codes changes in a single bit of a
number representation do not produce another number - they produce something else. Number errors
are therefore automatically flagged. None of the above codes to that - which is a general defect.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 13

Code Letters CCITT
(hex) Alphabet #2

00 Blank Blank
01 E 3
02 L. Feed L.Feed
03 A -
04 Space Space
05 S '
06 I 8
07 U 7
08 C. Retn. C. Retn.
09 D WRU
0A R 4
0B J Bell
0C N ,
0D F
0E C :
0F K (
10 T 5
11 Z +
12 L)
13 W 2
14 H
15 Y 6
16 P 0
17 Q 1
18 O 9
19 B ?
1A G
1B Figs. Figs.
1C M .
1D X /
1E V =
1F Letters Letters

5-bit (Telex) Codes - The "letters" column is the basic character set. The other column is the shifted
set activated by the "Figs" code 1B(h). "Letters" is regained with code 1F(h).

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 14

Code Char Comment Code Char Comment Code Char Comment Code Char Comment
00 NUL Blank 20 SP Space 40 @ 60 `
01 SOH Start of Header 21 ! 41 A 61 a
02 STX Start of Text 22 " 42 B 62 b
03 ETX End of Text 23 # 43 C 63 c
04 EOT End of 24 $ 44 D 64 d

Transmission
05 ENQ Enquiry 25 % 45 E 65 e
06 ACK Acknowledge 26 & 46 F 66 f

(positive)
07 BEL Bell 27 ' Close Single 47 G 67 g

Quote
08 BS Backspace 28 (48 H 68 h
09 HT Horizontal Tab 29) 49 I 69 i
0A LF Line Feed 2A * 4A J 6A j
0B VT Vertical Tab 2B + 4B K 6B k
0C FF Form Feed 2C , Comma 4C L 6C l
0D CR Carriage 2D - Hyphen 4D M 6D m

Return
0E SO Shift Out 2E . Period 4E N 6E n
0F SI Shift In 2F / 4F O 6F o
10 DLE Data Link 30 0 50 P 70 p

Escape
11 DC1 Device Control 31 1 51 Q 71 q

1
12 DC2 Device Control 32 2 52 R 72 r

2
13 DC3 Device Control 33 3 53 S 73 s

3
14 DC4 Device Control 34 4 54 T 74 t

4
15 NAK Acknowledge 35 5 55 U 75 u

(negative)
16 SYN Synchronisatio 36 6 56 V 76 v

n
17 ETB Eind of Text 37 7 57 W 77 w

Block
18 CAN Cancel 38 8 58 X 78 x
19 EM End of Medium 39 9 59 Y 79 y
1A SUB Substitute 3A : 5A Z 7A z
1B ESC Escape 3B ; 5B [7B {
1C FS File Separator 3C < 5C \ Reverse 7C | Vertical

Slant Line
1D GS Group 3D = 5D] 7D }

Separator
1E RS Record 3E > 5E ^ Circumflex 7E ~ Tilde

Separator
1F US Unit Separator 3F ? 5F _ Underline 7F DEL Delete/

Rubout

7-bit American Standard Code for Information Interchange (ASCII)
The most common character representation in use.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 15

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char
00 NUL 20 DS 40 SP 60 ! 80 A0 C0 { E0 \
01 SOH 21 SOS 41 61 81 a A1 ~ C1 A E1
02 STX 22 FS 42 62 82 b A2 s C2 B E2 S
03 ETX 23 43 63 83 c A3 t C3 C E3 T
04 PF 24 BYP 44 64 84 d A4 u C4 D E4 U
05 HT 25 LF 45 65 85 e A5 v C5 E E5 V
06 LC 26 EOB/ 46 66 86 f A6 w C6 F E6 W

ETB
07 DEL 27 PRE/ 47 67 87 g A7 x C7 G E7 X

ESC
08 28 48 68 88 h A8 y C8 H E8 Y
09 RLF 29 49 69 89 i A9 z C9 I E9 Z
0A SMM 2A SM 4A ¢ 6A | 8A AA CA EA
0B VT 2B 4B . 6B ' 8B AB CB EB
0C FF 2C 4C < 6C % 8C AC CC EC
0D CR 2D ENQ 4D (6D - 8D AD CD ED
0E SO 2E ACK 4E + 6E > 8E AE CE EE
0F SI 2F BEL 4F | 6F ? 8F AF CF EF
10 DLE 30 0 50 & 70 90 B0 D0 } F0 0
11 DC1 31 1 51 71 91 j B1 D1 J F1 1
12 DC2 32 2 52 72 92 k B2 D2 K F2 2
13 DC3 33 3 53 73 93 l B3 D3 L F3 3
14 RES 34 4 54 74 94 m B4 D4 M F4 4
15 NL 35 5 55 75 95 n B5 D5 N F5 5
16 BS 36 6 56 76 96 o B6 D6 O F6 6
17 IL 37 7 57 77 97 p B7 D7 P F7 7
18 CAN 38 8 58 78 98 q B8 D8 Q F8 8
19 EM 39 9 59 79 \ 99 r B9 D9 R F9 9
1A CC 3A : 5A ! 7A : 9A BA DA FA
1B 3B ; 5B $ 7B # 9B BB DB FB
1C IFS 3C < 5C * 7C @ 9C BC DC FC
1D IGS 3D = 5D) 7D ' 9D BD DD FD
1E IRS 3E > 5E ; 7E = 9E BE DE FE
1F IUS 3F ? 5F ¬ 7F " 9F BF DF FF

8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC is obsolete.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 16

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char
00 20 SP 40 @ 60 ` 80 Ç A0 á C0 . E0 "
01 (21 ! 41 A 61 a 81 ü A1 í C1 2 E1 ß
02) 22 " 42 B 62 b 82 é A2 ó C2 0 E2 '
03 Ì 23 # 43 C 63 c 83 â A3 ú C3 / E3 B
04 Ë 24 $ 44 D 64 d 84 ä A4 ñ C4) E4 E
05 Ê 25 % 45 E 65 e 85 à A5 Ñ C5 3 E5 F
06 Í 26 & 46 F 66 f 86 å A6 ª C6 G E6 µ
07 ! 27 ' 47 G 67 g 87 ç A7 º C7 K E7 J
08 3 28 (48 H 68 h 88 ê A8 ¿ C8 9 E8 M
09 " 29) 49 I 69 i 89 ë A9 1 C9 6 E9 1
0A 4 2A * 4A J 6A j 8A è AA ¬ CA = EA S
0B % 2B + 4B K 6B k 8B ï AB ½ CB ; EB *
0C & 2C , 4C L 6C l 8C î AC ¼ CC : EC 4
0D * 2D - 4D M 6D m 8D ì AD ¡ CD 4 ED N
0E + 2E . 4E N 6E n 8E Ä AE * CE > EE ,
0F ' 2F / 4F O 6F o 8F Å AF + CF N EF 1
10 < 30 0 50 P 70 p 90 É B0 ! D0 J F0 /
11 = 31 1 51 Q 71 q 91 æ B1 " D1 L F1 ±
12 ; 32 2 52 R 72 r 92 Æ B2 # D2 H F2 $
13 . 33 3 53 S 73 s 93 ô B3 * D3 F F3 #
14 ¶ 34 4 54 T 74 t 94 ö B4 1 D4 B F4 !
15 § 35 5 55 U 75 u 95 ò B5 I D5 ? F5 "
16 , 36 6 56 V 76 v 96 û B6 M D6 C F6 ÷
17 0 37 7 57 W 77 w 97 ù B7 D D7 O F7 .
18 8 38 8 58 X 78 x 98 − B8 @ D8 P F8 E
19 9 39 9 59 Y 79 y 99 Ö B9 < D9 - F9 @
1A 6 3A : 5A Z 7A z 9A Ü BA 5 DA + FA ·
1B 7 3B ; 5B [7B { 9B ¢ BB 7 DB $ FB %
1C 2 3C < 5C \ 7C | 9C £ BC 8 DC (FC 6
1D : 3D = 5D] 7D } 9D ¥ BD E DD % FD ²
1E > 3E > 5E ^ 7E ~ 9E . BE A DE ' FE #
1F ? 3F ? 5F _ 7F - 9F ƒ BF , DF & FF

8-bit Character set used internally in an IBM PC and now externally as a
character set. Note that the codes are use to represent more than just
characters - graphics and technical symbols are included. The codes from
20(h) to 7E(h) have the same interpretation as the 7-bit ASCII set

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 17

Integer Numbers

Not everybody wants to represent numbers by their decimal digits - it is wasteful of
space and in computer-to-computer communications, two conversions are necessary.

If we are to represent integers in the computer, the first question to settle is the one
of how to represent negative numbers. There are two significant ways of doing this:

< Store the absolute value and store the sign separately (since the sign can only take two
values, only one bit is required for the sign)

< Store the number in 2's complement form.

The (almost) universal choice in computers is to store the number in 2's complement
form. The reason for this is that to add two 2's complement numbers together including
getting the sign of the answer right involves simply adding the two numbers together as
though they were simple binary numbers.

The rule for a 2's complement number is as follows: A positive number is represented
as the binary equivalent. A negative number is represented by taking the binary equivalent
of the absolute value, reversing (complementing) all the bits and then adding one to the
result. The effect of this is to retain 0 as “all 0s” and to make -1 equal to “all 1s”. The most
negative number is represented by a 1 in the MSB, a 1 in the Lsb and zeros otherwise. The
most positive number is represented by a 0 in the MSB and 1s elsewhere. If we start from
the most negative number and then “count” by incrementing the number in a logical manner,
we progress through -1 to zero and thence to the maximal positive number before “wrapping
round” and starting again.

Here are some examples being represented as an 8-bit number

Number Representation

17 00010001

1 00000001

126 01111110

127 01111111

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 18

Number Binary of absolute Complement bits Add one to result
value

-17 00010001 11101110 11101111

-1 00000001 11111110 11111111

-126 01111110 10000001 10000010

-127 01111111 10000000 10000001

The number 128 in this example would be 10000000 but that is also the representation of the
number -128 so there is an ambiguity. In fact we can only represent numbers in the range
-127 6 127 with 8 bits. The status of 128/-128 is ambiguous here and it is best left out of
the range. If it is required to have one of them in the range than -128 fits best because then
a “1" in the most significant bit always indicates a negative number (but it is not strictly a
sign bit). You might like to work out why there is always going to be a difference in the
positive and negative ranges in such a system whatever the length of the representation so
long as all the codes are assigned.

A particular point to watch is that some machines store the two bytes of a 16-bit
number in a different order to others The two great camps here are those who store numbers
as "least significant byte in least significant address" - which is sometimes referred to as
"INTEL format" - and those who store them the other way round - "Motorola format". As
an example consider the sequence 0100(h), 0101(h), 0102(h) stored in memory locations
300(h)-305(h):

Address 300(h) 301(h) 302(h) 303(h) 304(h) 305(h)

Intel 00(h) 01(h) 01(h) 01(h) 02(h) 01(h)

Motorola 01(h) 00(h) 01(h) 01(h) 01(h) 02(h)

However these problems are reasonably easy to solve.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 19

Floating Point Numbers

Floating point numbers are another story entirely. There are so many standards that
interchange between computers is rarely simple, and often hair-raising! Most people (except
IBM) store floating point numbers as something like n * 2 where n is between 0 and 2.m

However there is little agreement on the lengths and format of n and m. IBM stores numbers
as n * 16 .m

An evolving standard for floating point numbers is the "IEEE format" which defines
a number of formats for floating point numbers based on the formula s * n * 2 . Where sm

is the sign of the mantissa (+1 or -1), n is the value of the mantissa which is normalised to
lie in the range 2.0>n>1.0 and m is the exponent.

A typical single precision 32-bit floating point number would be stored as a sign bit
(1 = -ve), a 24-bit mantissa and an 8-bit exponent. Those of you who are quick at arithmetic
will realise that that doesn't add up - until you realise that the normalised form of the
mantissa means that the most significant bit is always 1 and therefore that doesn't need to be
stored. The exponent is stored in an offset form so that the number stored is always
regarded as positive. A common bias is 128 which gives an exponent range of 2 . 10 .±127 ±38

Since the mantissa is 24 bits long, the resolution is 2 . 10 .-24 -7

A typical double precision number extends the length of the mantissa and may (or may
not) also extend the length of the exponent.

s

s

s

s

f

f

f

f

e

e

e

e

1

1

1

1

8

7

11

39

23

24

52

8

msb

msb

msb

msb

msb

msb

msb

msb

Single (IEEE) = (-1) x 2 x (1.f)
s (e - 1 2 7)

Single (IBM) = (-1) x 16 x (0.f)
s

(e - 6 4)

Real (T. PASCAL) = (-1) x 2 x (1.f)
s (e - 1 2 9)

Double (IEEE) = (-1) x 2 x (1.f)
s (e - 1 0 2 3)

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 20

IEEE, PASCAL and IBM Floating Point Formats

PHY 406F - Microprocessor Interfacing Techniques

 Drummond's Law #?2

 This observation is the basis for some old cypher-breaking techniques - see "the Adventure3

of the Dancing Men" in "The Return of Sherlock Holmes" by A. Conan Doyle

© James R. Drummond - September 1997 21

Compression

"Any storage system once installed is full"2

The motivation for data compression comes from the above observation. Data
compression consists of mapping the full representation of the data into a smaller (more
compact) representation using a defined set of rules. There are two types of data
compression:

Lossless - implies that the data can be recovered intact (bit-for-bit) by a reverse process

Lossy - implies that an approximation to the data can be recovered.

In most scientific applications only lossless compression is useful. Lossy compression is
mainly used in image work where the human eye cannot resolve all the information presented
anyway. We will concentrate on lossless compression.

There is a second use for “lossless” compression and that is in communication situations
where bandwidth (rate at which you can send information) is limited. Obviously if you can
reduce the number of bits to be sent - you save time and/or $$$.

Lossless data compression requires that there be some "pattern" to the data. It is impossible
to compress random bit patterns. However most data is structured - a typical structure is
ASCII text.

Huffman Coding

Huffman coding works on the principle that some codes occur more often than others. In
English the most common code is that for the letter "e" . In a static Huffman encoding the3

probability of occurrence of each symbol is assumed fixed and a "tree" is built on the
following basis:

Find two of the lowest probability symbols. These are "leaves" and are combined into a

14/14
0 1

8/14

space

i

aT

6/14

4/14

2/142/14

4/14 s

t

eh

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 22

 Huffman Tree - Fixed Encoding

"node" which has the sum of the probabilities of the two leaves. Take the remaining symbols
and this node and repeat until we have a single node with probability unity.

With both the transmitter and receiver in possession of this tree the compression proceeds
as follows:

Take first character of input. Find location on tree. Start from top of tree. For each "left"
branch on the way to the character output "0" and for each "right" branch output "1". Get
next character and repeat.

The expansion algorithm can obviously proceed in the same manner.

Here is a simple example. The message to be compressed is: "This is a test". In 7-bit ASCII
this requires 14*7=98bits of storage.

First we will customise a tree:

Character Probability

space 3/14

s 3/14

i 2/14

t 2/14

T 1/14

h 1/14

a 1/14

e 1/14

Now we construct the output:

0000 0001 010 11 10 010 11 10 0010 10 011 0011 11 011

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 23

 T h i s i s a t e s t

which requires only 40bits for the representation.

This is a pretty trivial example but you get the idea.

The trouble with static Huffman encoding is that you have to know the table and a table that
compresses English text perfectly will not work well with French (or German, let alone
Japanese!). We therefore need a dynamic method of constructing the tree.

The methodology is as follows:

A tree consists of nodes and leaves each of which has a weight which is equal to the number
of times the symbol (leaf) or symbols below (node) have been used. There is one empty leaf
(MT) with a weight of zero. The tree is initialised with one MT leaf.

Read in the next character. If it is in the tree, send out the tree code and increment the
symbol weight by one. If it is not in the tree, then send the code of the MT leaf followed by
the literal code of the new symbol. Replace the MT leaf by a node with the MT leaf on the
"0" side and the new symbol on the "1" side with weight one. Now look at the tree and
starting from the bottom ensure that the weights increase as you go towards the top. If not,
starting with the lowest, swap the offending leaf or sub-tree with the one above with is
nearest but below it in weight. In the event of two possible choices, take the one put in the
tree first. Repeat the process until the weights progress properly. Now get the next character.

Both the compressor and the expander can construct the tree from this algorithm knowing
only the bit length of the basic symbol (how many bits long is the literal code of a symbol).

The tree construction of the same message as above is given in the accompanying diagram.
The output message will be:

"T" 0"h" 00" 000"s" 100space 11 101 1001 1000"a"
 T h i s i s a

01 10000"t" 10100"e" 00 110
 t e s t

(I've abbreviated the symbol code for the ASCII set by using quotation marks)

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 24

Notice two things about this message:

1) That a single ASCII character requires more than 8 bits to send because there is
additional information to send. This is a general characteristic of compression algorithms.
Because of this a compression algorithm doesn't necessarily produce an output that is shorter
than the input - it may be longer.

2) That the code for a given character varies in this case. For example the representation
of the "space" character is always different.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 25

Huffman Tree - Dynamic Encoding

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 26

Lempel-Ziv-Welch (LZW) Compression

This compression methodology relies on the recognition of "strings" within the input and
then effectively extends the "symbol set" to shorthand represent the strings. Thus with
ASCII text the first 128 symbol codes can be allocated to the basic set and then codes greater
than 256 are allocated to strings. (In practice 256 symbols are allocated to the basic set, but
that's a detail) Note that we need to define how many bits are allocated to the total symbol
set. A simple algorithm for this is to use 9-bit encoding until you have 512 symbols, then
switch to 10-bit and so on. There are also optimisation procedures which I won't go into
here.

The algorithm is:

Start with a null (empty) string and a table consisting of the basic character set.

Pick up the next character and append to string. If string is in the table, then get the next
character. If it isn't in the table, then put out the code for the previous string (which was
in the table) and generate a new entry for the current string. Throw away all the characters
except the last character of the current string (which becomes the current string with a single
character in it) and get the next character.

Here is the analysis of our current test string:

Input Table Output

T - -

h 128 7 "Th" "T"

i 129 7 "hi" "h"

s 130 7 "is" "i"

space 131 7 "s"+space "s"

i 132 7 space+"i" space

s - -

space 133 7 130+space 130

PHY 406F - Microprocessor Interfacing Techniques

Input Table Output

© James R. Drummond - September 1997 27

a 134 7 space+"a" space

space 135 7 "a"+space "a"

t 136 7 space+"t" space

e 137 7 "te" "t"

s 138 7 "es" "e"

t 139 7 "st" "s"

end "t"

Notice that in this case there really isn't much compression. However the efficiency rises
with length of message.

Comparing Compressions

There really isn't much to say about how to compare compressions in the general case.
There is always a particular case which shows some method to be better than others. I've
also restricted the examples to English ASCII text but you can compress any sequence of
uniform length symbols. The only real solution is to try several methods and see which is
best, but that gets tedious.

Here's a semi-serious example. A very large set of integer numbers in the range 0-1000 has
been written out in tabular form with 5 character spaces per number. Here is a part of the
output:

 365 127 333 567 134 999 0 10 670 1000 825 666

How would this compress the ASCII text of this output with the various schemes?

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 28

Compression Comments Bits/
Scheme Number

ASCII Each number takes 5 characters for 35
5*7=35bits/number. (Actually it would almost
certainly be 8bits/character but never mind.)

Huffman There are only 11 symbols (0-9 + space) and so these 20
will require about 4 bits to describe the tree
(2 >11>2). So each five character sequence contains4 3

5*4=20bits/number

LZW There are only 1000 strings (one for each possible 11
number) and so this can be represented in 11 bits (not
10 because we need the ASCII character set as well).
So each five character sequence needs 11bits

Binary Straight binary needs 10 bits/number. (Unless we had 10
to use byte boundaries in which case it would be 16)

In this case (highly repetitive data) LZW compression wins handsomely. Except that the
straight binary output is even better. This illustrates a significant issue: In large datasets it
is often better to retain them in binary format and provide "viewer" programs to convert
them to readable text, than to store them as text or even as compressed text.

Another example: A random collection of lower case letters.

In ASCII this is 7bits/character

In Huffman terms we would have a tree with 26 leaves which needs 4bits/character

LZW compression would have a terrible time - no sub-strings in random text. I wouldn't
like to predict the result or even if it would compress at all.

In this case Huffman wins.

