Lecture 23

Gaussian Beams
Higher Orders and Modes



Paraxial Wave Equation

m |[f we now assume that the function
m varies slowly in z on the scale of a wavelength
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m that it is smooth - higher order differentials can be
ignored
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m  The slowly varying envelope approximation (SVEA) leads
to the paraxial wave equation



A Gaussian Beam

Uno(X,Y,2) = 4|% ﬁ/ e ' exp

wWA(z) = w, (1 + z°/z,°), W,° = 27,/

R = (z°+z,%)/z, tan ¢ = z/z,

Fundamental Gaussian Beam Solution

Function of one parameter - z,

Circularly symmetric - function of r

Gaussian extent transversely - w is the e™ point of
amplitude

at z =0, w = w, and is the minimum extent of beam

m atz=1z, w=v2w, - z,is called the confocal parameter
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Standing Waves In a 1.5-D cavity

z=0

A cavity Is formed by two \/

mirrors assumed for

simplicity to be 100% /—\

reflecting

A mode (or standing
wave) happens if...
m Amplitude of field at any point is stationary

m Phase is also stationary

Neglect refraction losses

Can set up a mode if beam is Gaussian and mirrors
match R,,R, the radii of the wavefronts at each end



Standing Waves In a 1.5-D cavity

and for the spot sizes on
the mirror w, ,

z=0

==
/\

LA

2 —_—
Wi, =

921

™A

9,,(1-9,9,)

These solutions existif 0 <g,g, <1
Stable solutions require all of w,, w, and w, to be finite
and larger than the wavelength A



Standing Waves In a 1.5-D cavity

If g, = g, = 1 both mirrors
are plane - FP

m all ware infinite!
Ifg,=9g,=0,R=Land
the cavity is confocal

B OKbutw,=0
fg,=9g,=-1, R=1L/2
the cavity is concentric

= w,, are infinite!
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Any Other Solutions?

B Yes, It can be shown that...
U (X ¥,2) =

m
w

Where H_(X) is a Hermite polynomial
C, . Is a normalisation constant

| and m are integers

AKA TEM,,

Phase speed is
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Phase Speed to Resonator Frequencies
m |f the total phase change through a cavity “trip” is 2qgrr,
then mode Is stationary and cavity “resonates”

2 kydz = qm

Zy

_ Z Z _ +
= k(z, -z) - (I+ m+1) tanl( 2) tanl( 1) + P17 @

m  where the ¢ refer to phase changes on the mirrors which
we will now ignore



Phase Speed to Resonator Frequencies

m and if the frequency is related to k by wn/c
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m  Two conditions are useful
m  Near planar for which g,, g, are about 1
m  Near confocal for which g,, g, are about O




Near-Planar Cavities
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Modes spread all over the place!!
Many closely spaced modes
Lowest I+m is lowest frequency
Spacing in I+m is much less than spacing in g
m (Is the axial mode number
m | m are the transverse mode numbers
m  when a goes to zero all I,m modes become degenerate
®  only depends upon g



Near-Confocal Cavities
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m  Modes tightly spaced

Lowest I+m is lowest frequency

B Spacing in I[+m is half the spacing in g
m (Is the axial mode number
m | ,m are the transverse mode numbers

B There is degeneracy of modes, but only at discrete
frequencies



Paraxial Optics With Gaussian Beams

A Gaussian beam is a function of z,
Gaussian beam at any position is a function of g =z - I z,

A Gaussian beam is locally a spherical wave with radius

of curvature R

Consider a Gaussian beam on a thin lens

The size of the beam doesn’t change on either side of the

lens

The curvature of the beam is altered by the lens

IT CAN BE SHOWN THAT

®  The transformation of the parameter g is given by

m g =(Aqg+B)/(Cq+ D)

m where A,B,C,D are the elements of the 2x2 matrix for
paraxial ray optical systems

m  Notice that this is NOT a matrix equation



