Lecture 23

Gaussian Beams Higher Orders and Modes

Paraxial Wave Equation

- If we now assume that the function
- varies slowly in z on the scale of a wavelength $|\partial u / \partial z|$ « k|u|
- that it is smooth - higher order differentials can be ignored

$$
\nabla_{T}^{2} u+\frac{\delta^{2} u}{\delta z^{2}}+2 i k \frac{\delta u}{\delta z} \rightarrow \nabla_{T}^{2} u+2 i k \frac{\delta u}{\delta z}=0
$$

- The slowly varying envelope approximation (SVEA) leads to the paraxial wave equation

A Gaussian Beam

$$
u_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w} e^{-i \varphi} \exp \left(-\frac{\left[x^{2}+y^{2}\right]}{w^{2}}\right) \exp \left(\frac{i k\left[x^{2}+y^{2}\right]}{2 R}\right)
$$

- $\mathrm{w}^{2}(\mathrm{z})=\mathrm{w}_{0}{ }^{2}\left(1+\mathrm{z}^{2} / \mathrm{z}_{0}{ }^{2}\right), \quad \mathrm{w}_{0}{ }^{2}=2 \mathrm{z}_{0} / \mathrm{k}$
- $R=\left(z^{2}+z_{0}{ }^{2}\right) / z, \quad \tan \varphi=z / z_{0}$
- Fundamental Gaussian Beam Solution
- Function of one parameter - z_{0}
- Circularly symmetric - function of r
- Gaussian extent transversely - w is the e^{-1} point of amplitude
- at $z=0, w=w_{0}$ and is the minimum extent of beam
- at $\mathrm{z}=\mathrm{z}_{0}, \mathrm{w}=\sqrt{ } 2 \mathrm{w}_{0}-\mathrm{z}_{0}$ is called the confocal parameter

Standing Waves In a 1.5-D cavity

- A cavity is formed by two mirrors assumed for simplicity to be 100\% reflecting

- A mode (or standing wave) happens if...
- Amplitude of field at any point is stationary
- Phase is also stationary
- Neglect refraction losses
- Can set up a mode if beam is Gaussian and mirrors match R_{1}, R_{2} the radii of the wavefronts at each end

Standing Waves In a 1.5-D cavity

- and for the spot sizes on the mirror $\mathrm{w}_{1,2}$

$$
w_{1,2}^{2}=\frac{L \lambda}{\pi} \sqrt{\frac{g_{2,1}}{g_{1,2}\left(1-g_{1} g_{2}\right)}}
$$

- These solutions exist if $0<g_{1} g_{2}<1$
- Stable solutions require all of $\mathrm{w}_{1}, \mathrm{w}_{2}$ and w_{0} to be finite and larger than the wavelength λ

Standing Waves In a 1.5-D cavity

- If $g_{1}=g_{2}=1$ both mirrors are plane - FP
- all w are infinite!
- If $g_{1}=g_{2}=0, R=L$ and the cavity is confocal
- OK but $w_{0}=0$
- If $g_{1}=g_{2}=-1, R=L / 2$ the cavity is concentric
- $\mathrm{w}_{1,2}$ are infinite!

Any Other Solutions?

- Yes, it can be shown that...
$u_{l, m}(x, y, z)=$
$\frac{C_{l, m}}{w} H_{l}\left[\frac{x \sqrt{2}}{w}\right] H_{m}\left[\frac{y \sqrt{2}}{w}\right] e^{-i(l+m+1) \varphi} \exp \left(-\frac{r^{2}}{w^{2}}\right) \exp \left(\frac{i k r^{2}}{2 R}\right)$
- Where $H_{m}(x)$ is a Hermite polynomial
- $\mathrm{C}_{l, \mathrm{~m}}$ is a normalisation constant
- I and m are integers
- AKA TEM ${ }_{\text {lm }}$
- Phase speed is

$$
k_{\text {eff }}=k-(I+m+1) \frac{z_{0}}{z^{2}+z_{0}^{2}}
$$

Phase Speed to Resonator Frequencies

- If the total phase change through a cavity "trip" is $2 q \pi$, then mode is stationary and cavity "resonates"
$\int_{z_{1}}^{z_{2}} k_{\text {eff }} d z=q \pi$
$=k\left(z_{2}-z_{1}\right)-(l+m+1)\left[\tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)-\tan ^{-1}\left(\frac{z_{1}}{z_{0}}\right)\right]+\frac{\varphi_{1}+\varphi_{2}}{2}$
- where the φ refer to phase changes on the mirrors which we will now ignore

Phase Speed to Resonator Frequencies

- and if the frequency is related to k by $\omega \mathrm{m} / \mathrm{c}$

$$
\begin{aligned}
\omega_{q}^{l, m} & =\frac{q \pi c}{n L}+\frac{c}{n L}(I+m+1)\left[\tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)-\tan ^{-1}\left(\frac{z_{1}}{z_{0}}\right)\right] \\
& =\frac{c \pi}{n L}\left[q+\frac{(I+m+1) \cos ^{-1} \sqrt{g_{1} g_{2}}}{\pi}\right]
\end{aligned}
$$

- Two conditions are useful
- Near planar for which g_{1}, g_{2} are about 1
- Near confocal for which g_{1}, g_{2} are about 0

Near-Planar Cavities

- $\cos ^{-1}\left(g_{1} g_{2}\right)^{1 / 2}=\alpha<\pi$

$$
\omega_{q}^{l, m}=\frac{c \pi}{n L}\left[q+\frac{(l+m+1) \alpha}{\pi}\right.
$$

- Modes spread all over the place!!
- Many closely spaced modes
- Lowest l+m is lowest frequency
- Spacing in I+m is much less than spacing in q
- q is the axial mode number
- I,m are the transverse mode numbers
- when a goes to zero all l,m modes become degenerate
- only depends upon q

Near-Confocal Cavities

- $\cos ^{-1}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right)^{1 / 2}=\pi / 2$

$$
\omega_{q}^{l, m}=\frac{c \pi}{n L}\left[q+\frac{(I+m+1)}{2}\right]
$$

- Modes tightly spaced
- Lowest I+m is lowest frequency
- Spacing in $1+\mathrm{m}$ is half the spacing in q
- q is the axial mode number
- I,m are the transverse mode numbers
- There is degeneracy of modes, but only at discrete frequencies

Paraxial Optics With Gaussian Beams

- A Gaussian beam is a function of z_{0}
- Gaussian beam at any position is a function of $q=z-i z_{0}$
- A Gaussian beam is locally a spherical wave with radius of curvature R
- Consider a Gaussian beam on a thin lens
- The size of the beam doesn't change on either side of the lens
- The curvature of the beam is altered by the lens
- IT CAN BE SHOWN THAT
- The transformation of the parameter q is given by
- $q^{\prime}=(A q+B) /(C q+D)$
- where A, B, C, D are the elements of the 2×2 matrix for paraxial ray optical systems
- Notice that this is NOT a matrix equation

