
Lecture 23

Gaussian Beams
Higher Orders and Modes
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Paraxial Wave Equation

� If we now assume that the function 
� varies slowly in z on the scale of a wavelength

|Mu/Mz| « k|u|
� that it is smooth - higher order differentials can be

ignored

� The slowly varying envelope approximation (SVEA) leads
to the paraxial wave equation
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A Gaussian Beam

� w2(z) = w0
2(1 + z2/z0

2), w0
2 = 2z0/k

� R = (z2+z0
2)/z, tan  = z/z0

� Fundamental Gaussian Beam Solution
� Function of one parameter - z0

� Circularly symmetric - function of r
� Gaussian extent transversely - w is the e-1 point of

amplitude
� at z = 0, w = w0 and is the minimum extent of beam
� at z = z0, w = %2 w0 - z0 is called the confocal parameter



Standing Waves In a 1.5-D cavity

� A cavity is formed by two
mirrors assumed for
simplicity to be 100%
reflecting

� A mode (or standing
wave) happens if...
� Amplitude of field at any point is stationary
� Phase is also stationary

� Neglect refraction losses
� Can set up a mode if beam is Gaussian and mirrors

match R1,R2 the radii of the wavefronts at each end
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Standing Waves In a 1.5-D cavity

� and for the spot sizes on
the mirror w1,2

� These solutions exist if 0 < g1g2 < 1
� Stable solutions require all of w1, w2 and w0 to be finite

and larger than the wavelength 



Standing Waves In a 1.5-D cavity

� If g1 = g2 = 1 both mirrors
are plane - FP
� all w are infinite!

� If g1 = g2 = 0, R = L and
the cavity is confocal
� OK but w0 = 0

� If g1 = g2 = -1, R = L/2
the cavity is concentric
� w1,2 are infinite!



ul,m(x,y,z) '

Cl,m

w
Hl

x 2
w

Hm
y 2
w

e &i(l % m % 1) exp &
r 2

w 2
exp ikr 2

2R

keff ' k & (l % m % 1)
z0

z 2 % z 2
0

Any Other Solutions?

� Yes, it can be shown that...

� Where Hm(x) is a Hermite polynomial
� Cl,m is a normalisation constant
� l and m are integers 
� AKA TEMlm

� Phase speed is
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Phase Speed to Resonator Frequencies

� If the total phase change through a cavity “trip” is 2q ,
then mode is stationary and cavity “resonates”

� where the  refer to phase changes on the mirrors which
we will now ignore
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Phase Speed to Resonator Frequencies

� and if the frequency is related to k by n/c

� Two conditions are useful
� Near planar for which g1, g2 are about 1
� Near confocal for which g1, g2 are about 0
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Near-Planar Cavities

� cos-1(g1g2)
1/2 =  « 

� Modes spread all over the place!!
� Many closely spaced modes
� Lowest l+m is lowest frequency
� Spacing in l+m is much less than spacing in q

� q is the axial mode number
� l,m are the transverse mode numbers

� when  goes to zero all l,m modes become degenerate
� only depends upon q
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Near-Confocal Cavities

� cos-1(g1g2)
1/2 = /2

� Modes tightly spaced
� Lowest l+m is lowest frequency
� Spacing in l+m is half the spacing in q

� q is the axial mode number
� l,m are the transverse mode numbers

� There is degeneracy of modes, but only at discrete
frequencies



Paraxial Optics With Gaussian Beams

� A Gaussian beam is a function of z0

� Gaussian beam at any position is a function of q = z - i z0

� A Gaussian beam is locally a spherical wave with radius
of curvature R

� Consider a Gaussian beam on a thin lens
� The size of the beam doesn’t change on either side of the

lens
� The curvature of the beam is altered by the lens
� IT CAN BE SHOWN THAT

� The transformation of the parameter q is given by
� q` = (Aq + B)/(Cq + D)
� where A,B,C,D are the elements of the 2x2 matrix for

paraxial ray optical systems
� Notice that this is NOT a matrix equation


