
Lecture 19

Fresnel Diffraction - The Twilight
Zone

Fraunhoffer Diffraction - Transforms,
Transforms, Everywhere
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It’s Still Too Complicated!!

� Scalar wave equation applied to a screen with a hole in it

� This is the Fresnel-Kirchoff
integral formula

� Shows a phase factor of -i for
the diffracted wave

� Integration of secondary
radiators across the aperture
with an obliquity factor
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The Rectangular Slit

� If limits are infinity the signal
must be UP0 [normalization]

� Now take in infinitely long
slit
� eliminates y0 terms

� Take a single edge at x0=x
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The Fresnel Integral

� At x = 0, UP = UP0/2 which
implies 0.25 Intensity

� Moving x is equivalent to
moving observation point
since everything else is
(semi-)infinite
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The Circular Aperture

� Need Obliquity Factor to save us from a fate worse than
death (an oscillating integral!!)
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The Circular Aperture

� If rm = 0 (paraxial approximation), then we can recast this
problem in circular symmetry in terms of  = kr0

2/(2za)
and UP0 the undisturbed wave

� 0 = kR2/2z
� This integral oscillates
� If Q( ) 6 0 as   6 4, then it

collapses to a value of i
� Useful to consider places

where Re(exp(i )) > 0
separately from areas where
Re(exp(i )) < 0

� Divide integral into zones



Fresnel Zones in the Aperture

� Bright zones 0< <  
� Since  is quadratically

related to r, the radius  =
kr0

2/(2za) these regions are
also quadratic - but therefore
of equal area 

� For large numbers of zones -
the value of the integral
converges to half of the value
from the first zone

� Reason is the adjacent zones tend to cancel one
another.

� Number of zones is determined by 0

.
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The Fresnel Lens

� If we manipulate the zones by
adding an opaque mask to
eliminate all negative
contributions - the positive contributions
add up and a large amount of energy
arrives at the focus - a fresnel lens

� Can also do it by manipulating the
phase
� better because it does not lose

energy
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Fraunhoffer Diffraction

� Go Back to our original equation

� where PS is the source-observation point distance
� xm = (zx‘+z‘x)/(z+z‘ ) xm 6 x as z‘  6 4
� ym = (zy‘+z‘y)/(z+z‘ ) ym 6 y as z‘  6 4
� za = (zz‘ )/(z+z‘ ) za 6 z  as z‘  6 4
� Now assume that x0

2, y0
2 are negligible
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Fraunhoffer Diffraction

� This is effectively saying that BOTH the source and the
observation point are “far” from the aperture
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Fraunhoffer Diffraction

� If we now generalise this by replacing the plane wave
from the source (U0/z‘ )  by a general distribution across
the aperture U(x0,y0)

� Recognise that in a paraxial approximation a long way
from the aperture it is the ANGLES that matter, not the
positions
� u = kxm/za, v = kym/za

� In case you don’t recognise it - the final expression is a 2-
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D Fourier Transform relation!
Fraunhoffer Diffraction

� relates x0, y0 space to u, v space
� e.g. for a square aperture and a plane wave - 

� the intensity is the square of this function
� For a circular function it is almost the same except that

it’s a Bessel function, not a sinc function
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Fraunhoffer Diffraction

� If this is so then we have a powerful technique
� Applies for large distances
� Applies for paraxial approximation
� Maybe relax these conditions with more thought...
� BUT any U0(x0,y0) can be used
� We have computers - Have FFT - will compute!



Fourier Transforms for Fun and Profit

� Six functions you need to know
FUNCTION FOURIER TRANSFORM

rect(x) sinc(u/2)

&(x) 1

comb(x) comb(u/(2 ))

Gaus(x) Gaus(u/(2 ))

step(x) (1/2)&(u/(2 )) + 1/(iu)

cyl(r) J1(u‘ )/u‘
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Fourier Transforms for Fun and Profit

� Fourier Transforms are linear
� Û( g + h) = Û(g) + Û(h)

� Similarity (stretch one axis - contract the other)
� If Û(g(x,y)) = G(u,v)
� then  Û(g( x, y)) = 1/| |G(u/ ,v/ )

� Shift property
� If Û(g(x,y)) = G(u,v)
� then Û(g(x- ,y- )) = G(u,v)exp(-i( u+ v))
� that’s only a phase factor

� Parseval’s Theorem
� If Û(g(x,y)) = G(u,v)
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Fourier Transforms for Fun and Profit

� Convolution
� If Û(g(x,y)) = G(u,v) and If Û(h(x,y)) = H(u,v)
� then  If Û(g*h) = G(u,v)H(u,v)

� Convolution in one space is multiplication in the other
� If a(x) , A(u) and b(x), B(u) are transform pairs

� convolution is...
� commutative
� distributive
� shift invariant (change of origin)
� associative
� the & function is the identity function for

convolution
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Approximation Criteria

Assumptions made by this function derivation are that:

� We can approximate diffraction behaviour with a scalar
potential.

� U and LU contribute negligible amounts to the integral
except at the aperture.

� The values of U and LU at the aperture are the same as
they would be in the absence of the aperture (no edge
effects).

� Solutions satisfy the scalar wave equation.
� Solutions satisfy conditions of continuity and integrability

[Green’s Function].



UP '
&ikU0

2 zz )
e ik|PS|

mA
exp ik

2za

(x0 & xm)2 % (y0 & ym)2 dS

z

x

x

∆
∆

> > 



λ

1 3/

Fresnel Approximations

� Fresnel approximation applies when distances from the source
and the observation points to the aperture are such that we
can approximate spherical waves by surfaces of constant
phase which are quadratic in their transverse variables.

� For an observation point (x,y,z) and aperture point (x0,y0,z0)
this implies:
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� For the observation point (0,0,z), and aperture width x we
require that:
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Fraunhofer Approximations

� The Fraunhofer approximation applies when the incident and
refracted waves may be approximated by plane waves.

� For the observation point (x,y,z) and aperture point (x0,y0,z0)
we require that
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� where za / (zz‘ )/(z+z‘ ) and za 6 z  as source distance z‘  6 4.  
� Also known as the far field approximation.
� Tend to convert Cartesian observation coordinates (x,y,z) to

angles (u,v) as they are a more “natural” coordinate set in a far
field approximation. 



Paraxial Approximation

� An additional approximation is required to remove the
obliquity factor.

� We can remove the obiliquity factor if we can
approximate cos(n,r) by unity.

� This approximation is valid if the vector r makes an angle
less than ~30E to the normal.

� Required for both source and observation point.
� Equivalent to requiring that the source and obsevation

points are close to the z-axis (hence the name).


