Lecture 11

Conductin g Interfaces and
Rough Surfaces

Boundary Conditions

The Story So Far...

®m  The incident wave (Lecture 9)
m ko= (YK Mk Tk, ) = (Pksing, |, 0, *keosB,)
®m At the interface
®  Require spatial and temporal continuity
Ykor-wt="k.r-wt="k . r - wt
no y components
no z component at interface (z=0)
Ykox = Yk, x =7k X
m  All the x components are equal
m Weget =>
® sinB, = sinB,. - Law of reflection
B n, sinB, = n, sinB, - Snell’'s Law (n sinB is conserved)

The Story So Far (lI)...

Boundary conditions for fields at the interface (Lecture
10)
Tangential E and H fields are continuous

m ("E+"E)xn="Exn
m ("H+"H)xn=?Hxn
B ("kx"E)xn+(*kx "E)xn=(Ckx’E)xn

We resolved components of E or H fields for “k and °k.
But, we noticed that there was a critical angle sin8, =
n,/n,

where there was no spatially varying z component of k.




Evanescent TE Waves

What's cos6,?

Snell’s law: sinB,=(n,/n,) sinB, = sinB,/sinB,
cos’8, = (1 - (n,/n,)?sin’g,)= (1 - sin°,/sin’6,)
®  co0sB, is imaginary

m et B* = k® (sin®0,/sin’0, - 1) = - °k® cos®0,

Transmitted wave propagates spatially as exp(i °k . r)

exp( i (x ?k sinB, + z %k cosb,)

exp (-Bz) exp(i (x *k sind,))

Wave decays on space scale 1/3

for glass n, =1.5 interface with airn, = 1

m 0, =sin"(2/3) = 41.8°

®m  at 45°, 1/p about A,/2

Evanescent wave is the wave that penetrates the
second medium decaying as 1/

Evanescent TE Waves - Phase Changes

Look at boundary conditions

- 1+E0 + 1-E0 - ZEo

m “E,"kcosb, - "E, kcosb, = °E,’k cosb,

m B=i%%cosh, o= 'kcose,

Solve for *'E, °E,

m °E,["E, = 2B/(a - iB)

n TEME,= (B +ig)(a - ip)

®m  There are phase changes in the reflected beam

Look atR, T

m T =0 because there is no z component in transmitted
wave

B R=|"E TES = |(ME IMENTE, ITE)H = 1

Total internal reflection as all beam energy is reflected

Occurs when 6, > 8,

Reflection at a Conducting Interface

Equations get complex - need approximations
Normal Incidence - gets rid of angle effects

H; = U, = Yo (What about ferromagnetics?)
Large conductivity o (not bad for metals)

Reflection at a Conducting Interface

Boundary Conditions

m 1+E0 + l—EO = ZEO

m VE (Mkiuy) cosB, - TE, (ki) cosb, = °E, (*k /)
coso,

Not yet assuming that p, =,

Now 2k is complex

B K= w?(pe) = 0 ? (1€, (1 +i0,/(e,w))

Can get the angles from

® sinB, = n, sinB, / (n, +iK,)

m  But it makes the solution messy

®  Assume normal incidence!




Reflection at a Conducting Interface

®  Boundary Conditions
- 1+E0 + 1-E0 - ZEo
n PE, (MK - YE, Tk, = 2B, (Ck /1)
m =07 (4e,) (1+i0,/(e,w))
m  Still very complicated!!
®m |n metals at low frequencies contributions of bound
electrons negligible compared with conducting
electrons
m  So assume Ve, =n + ik = V(io,/w €,)
m Vi=(1+i0)V2
m Ck=(1+i)V(0, Kw/2)
m  Soluble (sort of!!)

Reflection at a Conducting Interface

The solution is left as an exercise...

We can solve for the reflected component (*E, /*'E,)
R=|"E,IMENTE, IMEY)*| = 1-2V(2e,0/0,)

®  The higher the conductivity the higher is R

m  The lower the frequency the higher is R

Good conductors have little or no z-component to the
reflected beam

T =2 V(2e,w/o,) energy is dissapated in metal as Joule
heating

Assumed that the conductivity is the DC value

A Simple Example

We can extend our earlier analysis for a simple case of
light incident on a metal in a vacuum. n,=1, n, = n + iK
The Reflectance R becomes

R =|("Ep IME)(MEo IMEQ)* = ((n - 1)* + K)/((n + 1)* + K?)
K = 0 => dielectric case back

K >>n => Reflected wave - 1
Sodium A =589.3nm, n=0.04,
Bulk Tin A =589.3nm, n=1.5,
Gallium A =589.3nm, n=3.7,

Reflection from Non-Flat Surfaces

All surfaces can be considered to be superposition of
sinusoidal surfaces (Fourier analysis)

A surface height function h(x) can be considered as
Fourier components (given some conditions)

The general series is of the form

m z=h(x) = (1/2m[g(q) exp(igx) dq

If h(x) is periodic

m z=h(x) =) G(n) exp(i n2mx/A) for n = {-e, ..., o}
Consider one such surface for which G(n)=0 for only 2
components




The Sinusoidal Surface

®m  Sinusoidal surface of perfect conductor (T = 0)
Not strictly rigorous, but a limiting case
® Sum of incident and reflected fields = 0
m "E, exp(i(kx+k,2))+ “E, (x,2)= 0
®m on the surface z = h(x) = h, cos (2 rix/A\)
B h(x) = hy/2 (exp(2 mix/A\) + exp(-2 mix/N\))
m  Solves at the boundary at z = h(x) to
m E,(x)=- "E, exp(ikx)exp( ik, h, cos(2 Tx/A))

Reflection from Non-Flat Surfaces

®m ook at simple solution for k, h, <<1 (exp(x) =1+ x)
m TE,(x)=-"E, exp(ikx)(1 + ik, h, cos(2 mx/A\))
m  Get the z component by conserving energy under
total relfection
®  Rewrite cos as sum of two complex exponentials
®m  Get three waves
m ok, kt+21/A Kk - 21/A
m  \Waves are at different angles
m  Diffraction grating
m |fwe relax k, hy << 1, getk, + 2mm/A
®  Rough surface can be simulated by summing sinusoids

Reflection from Non-Flat Surfaces

m  Sinusoidal surface scatters at particular angles in stefrg Af

21/A
N

“Real World” Reflection

m  Examples of “typical” surface scattering by different types of
surface (lobes represent polar diagrams of the scattered power)
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