Wilberforce pendulum oscillations and normal modes
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This article summarizes our calculation of the normal modes and the normal coordinates for a
commercially available Wilberforce pendulum. A procedure is presented by which the normal
coordinates may be produced experimentally, so that the frequencies of the normal modes can be
obtained both theoretically and experimentally. Where possible, results have been compared with
those from previous papers. Finally, PC BASIC programs have been written in which the behavior
of the Wilberforce pendulum has bcen theoretically reproduced.

I. INTRODUCTION

The Wilberforce pendulum, named for its inventor, Lio-
nel Robert Wilberforce,! Demonstrator in Physics at the
Cavendish Laboratory, Cambridge, consists of a mass
hanging on a flexible spiral spring that is free to oscillate in
both the standard longitudinal mode and the torsional
mode. Figure 1 1s a drawing of one such Wilberforce pen-
dulum. When the mass 1s lifted above 1ts equilibrium point
and released from rest, 1t oscillates up and down along a
vertical line, slowly transferring its energy into a rotational
oscillation. If the nuts screwed onto the vanes protruding
from the sides of the mass are adjusted to give the appropri-
ate moment of inertia such that the frequencies of the longi-
tudinal mode and the torsional mode are the same, the pen-
dulum will transfer its energy back and forth completely
between these two modes of oscillation. Wilberforce was
actually interested in the problem of determining the rigid-
ity and the Young’s modulus of various spring materials,
and saw analysis of this coupling resonance as a technique
to obtain more accurate values for Poisson’s ratio more
efficiently.

This device is well known as a demonstration of energy
transfer and as a fascinating conversation piece. Sutton’
discussed use of the Wilberforce pendulum as a demonstra-
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tion of energy transfer between the longitudinal and the
rotational modes. Geballe® presented an English summary
of a then recent article in German by Krebs and Weidlich,?
adding some of his own experimental data regarding the
coupling between longitudinal and rotational oscillations
which were obtained in the context of an advanced student
laboratory. Freier and Anderson” described a pendulum
which, in addition to the standard longitudinal and rota-
tional modes, vibrates in a pendular mode with a frequency
half that of the other two modes.™ Williams and Keil’
have discussed how a Wilberforce pendulum can be fabri-
cated from spring wire, and present some observations
made with one that they constructed. A standard laborato-
ry and demonstration model is available commercially,'”
and a small version has been sold as an executive toy."''
Another version described by Ehrlich'> uses clay to adjust
the moment of inertia and obtain resonance. A film loop'”
is available that simply shows the oscillation of a Wilber-
force pendulum as it transfers back and forth between lon-
gitudinal and rotational modes.

The normal mode analysis of the Wilberforce pendulum
1s mentioned both in the original paper and in the paper by
Geballe, but has not been discussed in detail. Although
Geballe has determined the frequencies of the normal
modes, no one has discussed the determination of the nor-
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Fig. 1. Sketch of our Wilberforce pendulum. The actual length of the
spring i1s almost 2 m.

mal coordinates or how they may be obtained in practice.
We have carried out the complete normal mode analysis
and have determined the coupling constant for our Wilber-
force pendulum, from which we can experimentally obtain
the normal coordinates and thus produce the normal
modes. Because we have used a commercially available
Wilberforce pendulum,'® we feel that our data and our cal-
culations will be particularly helpful to others interested in
this device. We have solved the equations of motion ana-
lytically to obtain both the longitudinal and the rotational
motion for any arbitrary initial conditions. In addition we
have written a Runge—Kutta integration program for a PC
which numerically integrates the equations of motion and

plots both oscillation coordinates, allowing us to verify the
important features of our theoretical treatment.

II. THEORY

A. Normal modes

Let us consider a massless spiral spring with a longitudi-
nal spring constant £ and a torsional spring constant &, on
which we hang a mass m with a moment of inertia 7 about
its vertical axis. Assuming a linear coupling of the form
€z0 /2, where the two coordinates are z and 6, and
z =0 =0 1s the equilibrium point, we can write the La-
grangian for the system as

L=1mz*+116° — 1kz* — 160% — lezf), (1)

where the first derivative with respect to time is notated by
a single dot and the second derivative with respect to time
by two dots.

The Lagrangian equations of motion for z and 8 are then
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mz+ kz + e =0 (2)
and
fé—}—53+%62’:0, (3)

where in the absence of the coupling term simple oscilla-

tions in z and 6 are obtained. Eliminating z between Egs.

(2) and (3), and using the values for the frequencies

w. = k/m and w3 = 5/1,

4 2 2

e | (a}§+w§.)d? I(@f.afé E_)9:0, (4)
dt* dt* 4ml

where an equation of the same form exists for z.
Assuming a solution of the form

(1) = Ae'”, (5)
and inserting this into (4), we obtain a quartic equation,
w* — (02 + w3)w* + (0’0 — /4ml) = 0, (6)

which can be solved to determine the frequencies of the
normal modes,

~

0’ =Hwp + ol + [(0 —02)* +/mI ]} (7)

The trequencies of the two normal modes are then

0] = %{(J@ + w + [(GJ‘;; — W)’ + €g/mf]1"f2}

=" + (/4ml)""?, (8)
and |
@, =Ny + 0! — [(0p — 02) + /ml "%}
= w* — (e*/4mD) ">, (9)

whenw, = w, = w. Using a binomial expansion for w , €
these solutions become

0, =w + €/daoNml =w + w,/2 (10)
and

W, = — €/4oml =w — w,/2, (11)
where we define

Wy = €/20yml (12)
in agreement with the result of Geballe. Here,

wp = w; — @,,the beat frequency between the two normal
modes w, and ®,. This is analogous to the case of audible
beats, where sinusoidal tones of nearby frequencies 7, and
/> </f1 with equal amplitudes combine to produce a tone of
frequency F'= (f, + f5)/2 beating at a rate f, =f, — f,,
sofy =F+fz/2and f, = F — f,/2.

B. Normal coordinates

The general form of the rotation angle as a function of
time will be a combination of the two normal modes above:

0(t) =Asinw,t 4+ Bcosw,t+ Csinw,t + D cos w, 1,
(13)

SO

A(1) = — Awi sin @, t — Bw? cos !

where A and B are the amplitudes of sine and cosine com-

ponents for mode 1 and C and D are those for mode 2.
Substituting Eqgs. (13) and (14) into Eq. (3) above, we

obtain the general equation for z as a function of time:
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z(t) = (2w /e)(Asinw, t + Bcos o, t)
+ (2Iw5/€) (Csin w,t + D cos w, t)
— (26/€) (A sinw,t + B cos w, ¢
+ Csin w,t + D cos w, t), (15)
from which
z(t) = (2lw: /€) (Aw, cos w,t — Bw, sin 1)
+ (2103 /€) (Cw, cos w,t — Dw, sin w, 1)
— (26/€) (Aw, cos w,t — Bw, smw,?
+ Cw, cos w,t — Do, sin w, ). (16)

From the initial conditions, where the pendulum 1s given
an initial vertical displacement and an initial twist, but no
initial velocity 1n either coordinate, |

2(0) = z,, 2(0) =0, 6(0) =6, 6(0) =0, (17)
we obtain values for the amplitudes 4, B, C, and D:
A=C=0, , ' (18)

B= (0w} —w;) '[€z,/2] — (w5 — )0, ] (19)
and |
D= — (0] —w}) " '[ezy/2] — (0] —w5)6,]. (20)
Thus |
0(t) = (€2,/2]) (0} — @3) - '(cos w, t — coS W, 1)
+ 0y (@ — @3) ' [(@} — @})cos o, 1
— (03 —wy)cos w,t ] (21)
and
z(t) = zo (07 —@3) " [ (0] — w5)cos v, !
' — (w5 — w5)cos w,t |
— (216,/€) (0 — w3) (o] — ) (0; —w))
(22)

This motion 1S a linear combination of the two normal
modes

X(1) =z(8)2+ 0(1)0

X (COS wt — COS w,1).

=A,7, coswt+ 4,1, COS ®, 1, (23)

where 77, and 7), are the normal coordinates that we must
determine, and Z and & are “unit vectors™ for the longitudi-
nal and the torsional motion. Substituting Egs. (21) and
(22) into Eq. (23), and separating out factors of cos @, ¢
and cos w, f, we can 1dentify the amplitudes

A, = (] wa)%)_l[ezo/ZIm (w5 —mé)@o] (24)

and |

A, = — (07 —w3) " ezo/2] — (0] — wy) 0, ], (25)
and the normal coordinates

=04 (2I/€) (0 — 03)2 (26)
and |

B, =0+ (21 /€) (0} — w})2 (27)

From Eq. (23), the condition for obtaining mode 1 1s
that 4, = 0, and the condition for obtaining mode 2 is that

A, = 0. Thus we obtain the relation between z, and ¢, for
the normal coordinates,
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L

zo = (21 /€) (@0} — 03)0, = +I/mb,

(mode 1)
(23)
and |
zy = (21 /€) (w3 — 05)0, = —JI/m6O, (mode 2),
(29)

where we have substituted for o, and w, using Eqs. (8)
and (9), and used v, = w.

Also from Egs. (10) and (11) the coupling constant can
be determined,

€ = (0 — 2 Wml = 2wwgml. (30)

The moment of inertia and the mass of the pendulum bob
are related by its radius of gyration I,

I =mTI?, (31)
so Eqgs. (28) and (29) become

zo = + 16, (mode 1) (32)
and

7o = —T60, (mode 2). " (33)

[II. EXPERIMENTAL MEASUREMENTS

We used the Leybold-Heraeus “Wilberforce’s pendu-
lum,” available from Central Scientific Company.'® The
only physical specifications given are “The pendulum con-
sists of a 30-mm-wide helical spring, made of 1-mm-thick
steel wire and having 140 to 150 turns.” By actual count the -
number of turns is 130, and our measurements show the
coil diameter to be 30.7 mm to the center of the wires.
Physical specifications for the coil are summarized in Table

The mass and the moment of inertia of our pendulum

~ bob in its proper configuration were determined indepen-

dently to be
m = 0.4905 + 0.0003 kg,
I=139+0.02x10~* kg m”.

- We determined the moment of inertia by taking the bob
apart, measuring the masses and dimensions of 1ts compo-
nents, and calculating the moment of inertia from these
measurements. We also determined the moment of inertia
using a small torsional oscillator.'* The frequency was
measured with a cylindrical base of known moment of 1ner-
tia and again with the pendulum bob added to the base,
from which the moment of inertia of the bob about its verti-

 cal axis was determined. These two methods were in gen-

eral agreement, but the former technique seemed to be
more accurate. | |

Table 1. Physical parameters for a spring.

Coil radius R . 1.535 cm
Wire diameter d 1.0 mm
Number of turns » 130

Pitch unloaded (tight) 1.0 mm
Pitch 4 loaded 1.4 cm
Pitch angle a loaded 8.35°

Steel parameters

Shear modulus G 8.1 10" Pa
Poisson’s ratio o | 0.23
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These values must be corrected for the mass and the mo-
ment of inertia of the spring, respectively, to obtain opti-
mum accuracy. This problem has been discussed in great
detail by a number of authors, including Edwards and

Hultsch,”” who described nonlinear effects in a vibrating

vertical spring. Fox and Mahanty!® showed that, in the
imit where the spring mass is negligible in comparison
with the mass of the bob, the correction is equal to one-
third of the mass of the spring. Further information for
both the static and the dynamic cases is provided by Gal-
loni and Kohen,'’ as well as the references in the two pre-
ceding articles. Sommerfeld'® gives the same factor of one-
third as the limiting case for the correction to the moment
of inertia due to the moment of inertia of the spring.

In our case, using Eq. (7) from Edwards and Hultsch we
obtain the correction

Mo =M+ 0.337 m (34)

spring ?
SO

corr

~—I+03371

spring ’

(35)

where the moment of inertia of the spring is taken about its
axis. In this case the moment of inertia of the spring was
calculated from its measured mass and radius. The final
values are

mspn‘ng — 0.0768 i 0.0002 kg
and
Iﬂpring —0.181 + 0.005x 10— * kg m?,

SO
Mo, = 0.5164 + 0.0004 ke,
I,.=1454+0.02%X10"* kg m*.

Thus the relation between the twist and the vertical dis-
placement to obtain the normal coordinates for our Wilber-
force pendulum is

Zo = +0.0168 + 0.00020, (mode 1) (36)
and
zo = — 0.0168 + 0.00026, (mode 2), (37)

where 0, 1s in radians and z, is in meters, so the two normal

coordinates are obtained by giving each a vertical displace-
ment followed by either a clockwise or a counterclockwise
rotation.

In practice, we rotated the system by one full turn (an
easily determined rotation), in either direction, and lifted it
by the amount determined using Egs. (36) and (37). The
normal modes were very stable, and could be observed for
several minutes as the motion simply damped down with
no discernible transfer of the energy between the original
longitudinal and torsional modes.

The instruction sheet for the Leybold—Heraeus “Wilber-
torce’s pendulum” suggests that one technique in adjusting
the moment of inertia to obtain the resonance condition is

.. the spring is twisted in its position of rest by turning the
welght about 1ts own axis once, the weight is then lifted
about 10 cm high and released. Under these circumstances,
there 1s no phase shift between the longitudinal and tor-
sional oscillations which, therefore, do not affect one other
in the beginning.” The calculation above leading to Egs.
(36) and (37) shows that this is a reasonable suggestion
and lays out its theoretical basis.

The correction to I' in Eqgs. (34) and (35) due to the
effects of the spring is small:
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o oo 1[1 ; .-rrz,ﬁ,_(R2 1)_ ] |
M., M 3m\ I’
which is less than 1% after taking the square root. The
difference between I" obtained using corrected and uncor-
rected values of I and m in our case is indeed less than 1%,
and well within the limit that can be observed when experi-
mentally setting up the normal modes.

The measured frequencies in the energy-transfer mode
are

W =wy=0w, =231+0.02 rad/s
and

wy = 0.232 4+ 0.002 rad/s.

The frequencies that we measured for the normal modes
are close to those expected from the calculation using the
measured longitudinal/torsional oscillation frequency w
and the measured beat frequency w,:

0, =0+ wg/2=2.43 4+ 0.02 rad/s
@, =2.41 + 0.01 rad/s

for the mode in which the spring is lifted and unwound, and
W, =0 —wg/2=2.1940.02 rad/s (calculated),
W, =2.18 4+ 0.01 rad/s (measured directly),

for the mode in which the spring is lifted and wound more
tightly.
Using our measured normal mode frequencies

(calculated ),

(measured directly),

Wp =W — W,

—0.23 + 0.01 rad/s

We also performed static measurements of the longitudi-
nal spring constant k and the torsional spring constant &,

k=2.80+ 0.05 N/m

(from normal modes).

and

O0=786+0.16x10"* N m,

from which the standard oscillation frequencies can be de-
termined:

w, =\ k/m =2.33+0.02 rad/s

and

w, =6/ =2.33 +0.04 rad/s,

using the corrected values for m and 1.

IV. COMPARISON WITH SOMMERFELD
THEORY

We can obtain further insight into the nature of this reso-
nant system by comparing our results with those obtained
by Sommerfeld,'® in a treatment that approaches the prob-
lem from first principles of spring construction. Sommer-
feld’s equations, modified to our notation, are

Z+wz+ (KR /m)(osin a cos a)f =0 (38)
and .
é+w§6’+(kR/I)(USinczcosa)z:O, (39)
with the spring constant for negligible pitch
k=GJ,/R* ' (40)
and the polar moment of inertia of the wire
J, =mnd"/32, ' ' o (41)
R. E. Berg and T. S. Marshall 35



where ¢ is Poisson’s ratio, « is the slope of the spring helix
for a coil of radius R constructed from wire of diameter d
and total length Zusing material of shear modulus G. Thus
the theoretical value for our longitudinal and torsional
spring constants are

k= Gd*/64nR > =2.69 N/m
and |
§=kR?*(1 +ocos’a) =777+ 0.01X10"* Nm,

where 7 is the number of turns in the spring. Here we have

used the value G = 8.1 % 10'° Pa for the shear modulus,'”

and measured values for the coil radius R, the wire diame-
ter d, the number of turns », and the pitch 4 of the loaded
spring. For our case the pitch /4 of the loaded spring 1s 1.4
cm so the angle |

a = 0.1457 + 0.0004,

wheresina = h /(27R).

Using Sommerfeld’s relations we can also determine the
values of the longitudinal and the rotational frequencies,
corrected for details of the spring structure:

w; = (GJ,/mR*C)(1 + 0 sin’ a)

= (k/m)(l + osin” a) (42)
and
@b = (GJ,/I¢) (1 + o cos® a)
— (kR ?*/D (1 4+ o cos’a), (43)
from which
. = 2.288 + 0.001 rad/s
and |

W, = 2.31 + 0.02 rad/s,

using o = 0.23,"” the theoretical value for k, the measured
value for «, and corrected measured values for m and 1.

It is interesting to use the resonance condition by setting
the two frequencies of Egs. (42) and (43) equal:

(k/m)(1 4+ osin*a) = (kR?*/I)(1 4 ocos® a), (44)
from which, using I = mI™*, we obtain

=R [(1 +ocos’a)/(1+osin’a)]’”. (45)

For small « this reduces to

I =R(1+0)"", (46)

a result also given by Feather,*® the following a derivation
along the lines of Sommerfeld’s.
Using our measured value for a, this becomes

T =1.10R, _
which can be compared with our experimental value of
I'=1.09R,

using the value for the radius of gyration from Eqs. (36)
and (37) and a coil radius of 0.015 35 m.

Thus any pendulum bob whose radius of gyration 1s re-
lated to the coil radius by Eq. (435) should be at resonance,
within the limits of small pitch angle inherent in the Som-
merfeld theory.

V. COMPUTER CALCULATIONS
Equations (21) and (22) can be solved to obtain the

position and the rotation of the bob as a function of time 1t
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the bob is displaced from its vertical equilibrium point
and/or given some rotation. Alternatively, Egs. (2) and
(3) can be numerically integrated to obtain the bob posi-
tion and rotation as a function of time. Both of the above
procedures gave the same result, a condition which we used
to check our mathematics. Figure 2 shows bothzand f as a
function of time for one complete beat oscillation when the
bob is raised and released from rest, obtained by numerical-
ly integrating Egs. (2) and (3) using a Runge-Kutta tech-
nique,”' details of which will be described later.

One characteristic of a system 1n which the coupling is
linear and which therefore possesses normal modes 1s that
the motion of the system in a normal mode always lies
along a line for any amplitude, in this case one of the two
lines given by z = + 0.01686. This may be contrasted with
the case of the elastic pendulum, for which the coupling is
nonlinear, leading to stable oscillations which have differ-
ent paths in z-0 space for each amplitude. Another interest-
ing observation 1s the relationship between the phases of
the z or the 6 motion as the energy transfer is completed
and restarted, as can be observed in Fig. 2. Completing the
analogy to audible beats, this phase behavior 1s identical to
that of the waveform for audible beats, which 1s obtained by
balanced modulation (or double-sideband modulation or
ring modulation) of the average frequency F by the fre-
quency f5/2.”* In the case of the Wilberforce pendulum
the beating 1s between the two normal modes w, and w, .
Inspection of the graph of the motion, as well as the equa-
tions for z and 6 presented in our development, also rein-
forces the meaning of z and @ as truly equivalent and sym-
metrical canonical variables.

Our introduction of € as an operational coupling con-
stant provides us with additional insight into this system
and illustrates the limit of the Sommertfeld treatment.

From Eq. (30), using our measured w, wg, m, and 1,

€ = 2w yml =9.27 +0.30% 10~ N.
Equations (2) and (3) can be put in canonical form,

dz _

i _

— — Wz € o, = Z (47)
dt 2m dt
and
O e, Yy (48)
dt 27 dt *
WILBERFORCE PENDULUM
1.5 | | | | | ’ 2.52

1.08

0.84

)z (em) ——

-0.84

-1.68

(

) 9 (THdiHHS) ——

1.5 | | 1 I | | 9 59
| 30

=
cn
-
p—
i
b2
=
b2
-]

Fig. 2. Coordinates z and 6 as a function of time for our Wilberforce
pendulum, when the pendulum is started in the longitudinal mode by
lifting the bob straight up and releasing it from rest.
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for Runge-Kutta integration. For the value of € obtained
above, the values of w, the pure longitudinal or torsional
oscillation frequency, w, and @,, the normal mode fre-
quencies, and @y, the beat frequency were determined by
inspection of the computed oscillations. The values ob-
tained are

w=0, =0 =2.314 rad/s,
wp = 0.2315 rad/s,

w, = 2.424 rad/s,

w, = 2.191 rad/s,

which are consistent with our experimental results.

In most respects, the Sommerfeld treatment and our
treatment are complementary; however, in the case of the
value of the coupling constant €, our results deviate signifi-
cantly. We believe that this is because of the inherent limit
of the Sommerfeld theory to “small pitch angles,” as dis-
cussed above. Our parameter € 1s related to the energy con-
tent of the spring, and 1s clearly greater with the larger bob
mass than that assumed in the Sommerfeld derivation. As a
result of this difference we cannot independently determine
o. In addition, using both € values in our numerical integra-
tion shows that our results are quite consistent, while the
value for € predicted by the Sommerfeld theory produces
incorrect oscillation frequencies for the pendulum.

Comparison of our Egs. (2) and (3) with Sommerfeld’s
Egs. (38) and (39) above allows us to make the identifica-
tion |

€ = kRo sin 2« (49)
from which
e=273+0.01xX10"°> N,

using theoretical values tor k£ and o, and measured values
for R and «a.

Adjusting the value of € in differential equations (47)
and (48) above results 1in substantially different oscillation
frequencies for the normal modes. For example, if

e =2.89X 107" N, then

w=0,=w, =2.310 rad/s,
wp = 0.068 rad/s,
@, = 2.344 rad/s,
w, = 2.276 rad/s,

which are consistent with themselves but deviate signifi-
cantly from all of our other results.

While our use of € as an operational variable for the pur-
pose of determining the normal modes and normal coordi-
nates works as long as the coupling between modes is lin-
ear, Sommerfeld’s treatment cannot be extended to this
general case, because of the additional forces due to twist-
ing and bending of the spring under the applied weight.
This 1s consistent with Sommerfeld’s introductory state-
ment on p. 308, regarding the winding of his spring, “On
removing the mandrel, we obtain a helical spring which we
fasten at one end in some way, loading the other end with a
disk, the weight of which is supposed to be small enough so
that the resulting pitch of the spring is smal/ compared to
the radius of the cylinder.” In the present case, although
the pitch is equal to the wire diameter for the unloaded coil,
the radius 1s about 1.5 cm and the pitch is over 1.4 cm with
the mass added, so Sommerfeld’s condition does not apply.
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For our treatment no such limitation applies, as long as the
coupling 1s linear.

VI. SUMMARY AND CONCLUSIONS

The procedure that we have suggested yields good re-
sults for determination and experimental verification of
both normal modes and normal coordinates. Our equa-
tions differ from those of Sommerfeld in that there is no
limit on the stretch of the coil within the constraints of
linearity of €. Determination of Poisson’s ratio o has been
the primary goal in use of the Wilberforce pendulum, with
Wilberforce (and Geballe) using coupling between the
longitudinal and the torsional modes and Sommerfeld pro-
posing a technique more directly related to the resonance.
However, our aim in this paper is to show how the normal
coordinates of the Wilberforce pendulum can be set up and
to verify this procedure both experimentally and by com-
parison with computed oscillations. For very light masses,
the value of € obtained in Eq. (30) could be used in Eq.
(49) to determine ¢. However, both commercial Wilber-
force systems and those constructed by physicists, as de-
scribed in the literature, use larger masses, and therefore lie
outside of the limits specified by the Sommerfeld treat-
ment.

- Note added in proof: In a paper published after accep-
tance of this manuscript, Kopf *° stated that, once the reso-
nance condition w, = @, has been met, then “With the
pendulum thus tuned, one can demonstrate experimentally
the rather astonishing fact that neither length or diameter
of the wire nor pitch and number of turns influences the
resonant condition.” Equations (32) and (33) constitute a
theoretical basis for that conclusion in that they are derived
directly from the resonance condition and involve only the
radius of gyration I of the pendulum bob explicitly. In fact,
using Sommerfeld’s approach to obtain Eqgs. (45) and
(46),1t1s clear that the only factors that affect the resonant
value of the radius of gryation are the pitch, coil radius, and
Poisson’s ratio. In the limit of small pitch angle, the only
spring parameters which have any influence whatever on
the resonant condition are coil radius R and Poisson’s ratio
g. This is why the Wilberforce pendulum was valuable in
experimental determination of Poisson’s ratio.
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