Classical Physics

- ☐ The world is a "clockwork."
- ☐ It is describable by *Laws*
- ☐ The Laws use:
 - The language of mathematics
 - Everyday words with precise definitions.
- □ Space and time are continuous

Guessing an answer

- □ Order-of-magnitude calculations
- □ Dimensional analysis
- □ Fermi problems

Units

- Systems of units
- □ 4 fundamental ones
 - Length, mass, time, electric charge
 - All others derived from these
- □ Dimensional Analysis and Unit Conversion
 - Dimensions can be treated as algebraic quantities

Coordinate Systems

- ☐ Cartesian (Rectangular)
- ☐ Polar (Spherical)
- ☐ In principle, the choice is arbitrary
- □ In practice, some choices make your work much simpler

Scalars and Vectors

- □ Scalar: magnitude only
- □ Vector: magnitude and direction
 - Not part of the specification: a starting point.
 - Often specify with Cartesian components.
- Vector addition and subtraction
 - Just add Cartesian components.

Kinematics

$$\vec{x} = \vec{f}(t)$$

$$\vec{v} = \frac{d\vec{x}}{dt} = \vec{g}$$

$$\vec{v} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{v}}{dt^2}$$

Constant Acceleration

$$\overrightarrow{v_f} = \overrightarrow{v_i} + \overrightarrow{a} t$$

$$\overline{x_f} = \overline{x_i} + \overline{v_i} t + \frac{1}{2} \vec{a} t^2$$

- Freely falling bodies
- Projectile
- Centripetal and Tangential acceleration

Newton's Laws

$$\vec{F}_{total} = \frac{d\vec{p}}{dt}$$
 $\vec{p} = m\vec{v}$ $\vec{F}_{total} = \sum \vec{F}_i$

$$\vec{F}_{1 \text{ on } 2} = - \vec{F}_{2 \text{ on } 1}$$

Ballistocardiogram (BCG)

Four Fundamental Forces

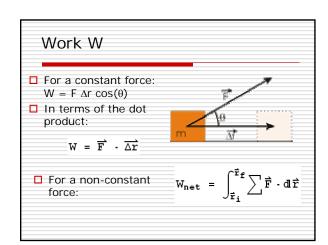
- 1. Gravitational
 - Caused by masses
- 2. Electromagnetic
 - ☐ Caused by electric charges
- 3. Nuclear (strong)
 - □ Holds the nucleus together
- 4. Weak
 - □ Governs radioactive decay

The *Field* Concept

- □ Divides, say, the gravitational interaction into 2 parts:
 - 1. A mass M causes a gravitational field in all regions of space around it.
 - 2. The gravitational field causes a force on any mass m placed in it.

Systems and their Environment

- ☐ For many problems, you need to define the *system*.
 - The part of the universe outside the system is called the *environment*.
- □ Then, identify things (such as forces) from the environment that are acting on the system.



Work - Kinetic Energy Theorem

Often allows us to solve problems without using Newton's Laws directly.

$$K \equiv \frac{1}{2} m v^2$$

$$W_{\text{net}} = \Delta K = \frac{1}{2} \text{ m } v_{\text{f}}^2 - \frac{1}{2} \text{ m } v_{\text{i}}^2$$

Conservation of Energy

Energy has many forms:

- ☐ Kinetic
- ☐ Heat
- □ Potential
- ☐ Etc.

ΔE_{system} Change of energy of a system

Energy transferred into the system

 $\Delta E_{\text{system}} = \sum_{i} H_{i}$

Power

- □ P = dE / dt
 - Unit: J/s = watt W
 - P = **F** . **v**

- Potential Energy U
- □ Scalar
- $\square \Delta U = -W$
- ☐ Arbitrary choice of where U = 0
- Energy stored in a system
 - Gravitational: mgh or –G Mm/r
 - Spring-mass: ½ k x²
 - Electrostatic: k Qq/r
- \square $E_{mech} = U + K$

2 Different Kinds of Forces

- Conservative
 - The work done is independent of the path
 - One may define a potential energy U
 - $\mathbf{F}_{x} = dU / dx$
- Non-conservative
 - The work depends on the path
 - Potential energy is not definable

Conservation of Momentum

For an isolated system, the total momentum is conserved.

Impulse: $\vec{I} = \sum_{i} \vec{F} \Delta t = \Delta \vec{p}$

Collisions Elastic Forces between objects in system are conservative. Emech = K + U conserved Inelastic Forces between objects in system are not all conservative. Emech not conserved. Vector momentum is conserved in both cases.

Translational Motion	Rotational Motion	Connection
V	ω	V = rω
а	α	$a_t = r \alpha$
m	$I = \Sigma (m r^{2})$	

