Problem Solutions

Problem 1
Part A

For the light traveling to Reflector R;, the light that reaches the reflector v
must be going “upwind” relative to the interferometer, as shown.
Therefore, its speed relative to the interferometer is

co -V
The light travels a total distance 2L, so the time is

t :L (1.1)

For the light traveling to Reflector Ry, when it is traveling towards the reflector its speed
is ¢ + v relative to the interferometer, and when it is returning to the beam splitter its
speed is ¢ —v. Thus the total time is:

L L 2Lc
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From Equations 1.1 and 1.2 it is fairly simple to show the Equation A.1 is true.

Part B

The difference in times is

2Lc 2L
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Evaluating this can be a bit of a challenge for cheap calculators because the two terms in
the square brackets have almost the same value. Here is a form which may work better
for your calculator
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Alternatively we can use the fact that (1—x)" =1—nx for small x to show that the time
difference is approximately

2
t,—t ~ T ~3.33x1076s
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In terms of the phase difference, this is

Aj=2r tZT‘tl _ 27 f (ty —t) = 277 x0.200rads (1.5)

Part C

This is just all of the above except that the labels 1 and 2 are interchanged. Thus we can
immediately write the answer:

A¢ =—-27x0.200rads

Part D

Recall that when the phase difference is = we have complete destructive interference.
Here we have gone from a phase difference of 0.400 = through O (constructive
interference) to -0.400 = radians. This should be observable.

Problem 2

If the period of the source is T relative to Pablo, then the wavelength of the wave relative
to him is

A=(C+V)T (2.1)

But this period is the time dilated value. If the period of the source in a frame stationary
relative to the source is Ty, then
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The wavelength of the wave in a frame stationary relative to the source, Ay, is related to
this period by

T )Ty = T (2.2)



To :% (2.3)

Thus Equation 2.1 becomes

A [1+vic
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A=(C+V)

Problem 3

Let’s start with the value of zero. This is just the value if a signal propagating at c travels
from Event 1 to Event 2. Although this may be obvious, let’s do the math

c2At? - Ax% =0 (3.2)
Divide by At?.
2
c? —(%} =0 (3.2)

But % IS just the speed of a signal propagating from Event 1 to Event 2, v, so:

v=cC (3.3)

If the interval squared is greater than 0, Eqn 3.2 becomes:

2
c? —(HJ >0 (3.4)
At
So
v<ce (3.5)

This makes sense. If the two events occur at the same place at different times, the interval
squared is positive.

If the interval squared is less than 0, we get

V>C (3.6)



This also makes sense. If the two events occur simultaneously at different places, the
interval squared is less than 0, and a signal that connects them would have to move at
infinite speed.

Problem 4
Part 1

If uLoy =V, then fis 1. This is reasonable: the particle doesn’t move relative to the train
and the light meets it at the rear of the train.

Part 2

If u oy = ¢, then fis 0. This too is reasonable: the “race” ends in a tie.

Part 3

For Sue, the speed of light is (c — v) when it is traveling to the front of the car and (c + v)
after it is reflected. Thus the equivalent of Eqn C.4 is

Usye (1, sue +1t2,sue) = (€ =)ty sye —(C+V)t2 sye (4.1)
Therefore

12 sue _ (C—V)—Ugye
tisue (C+V)+Ugye

(4.2)

For Sue, the equivalents of Egns. C.5 and C.6 are

(C—=V)t1 sue = Lsue

(4.3)
(C+V)t2 sye = flsye

Eliminate Ls , solve for f and use Eqgn. 4.2 and we get

f = (c+V) (C—V—Ugye)
(c—V) (C+V+ugye)

(4.4)
Equating this to Eqn. C.7 we end up with
Usye =ULou =V (4.5)

This is the “common sense” result gotten by Galileo.



Problem 5

Energy is the time component of the vector 4-momentum. This answer is just from
looking at the structure of the equation.



