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PHYSICS OF MUSIC

REFERENCES:

1.) Charles Taylor, Exploring Music (Music Library ML3805 T225 1992)

2.) Juan Roederer, Physics and Psychophysics of Music (Music Library ML3805 R74 1995)

3.) Physics of Sound, writeup in this lab manual

4.) J. Lattard, Gammes et Temperaments musicaux (Music Library ML3809 L24 1988)

5.) Cool Edit manual (available in each sound room)

OVERVIEW OF AVAILABLE EQUIPMENT

1.) PC interfaced to cassette tape
player, CD player, and
microphone: allows you to analyse
live or recorded music. So if you
don’t feel like bringing your
double bass into the lab, just make
a tape of what you’d like to
analyse!

2.) Dual channel Analog Signal
Generator, Analog Fourier
Synthesizer: apparatus for
combining up to 9 analog sine,
triangle, or square waves.

3.) Yamaha Synthesizer/Keyboard
with MIDI interface: generates a
wide variety of synthesized and
sampled sounds. 

4.) Cool Edit software for PC: allows (i) detailed frequency and amplitude analysis of sounds 
(ii) addition of special effects (eg. echo, reverberation, envelopes, etc.), and (iii) digital
generation of sounds (eg. sine, triangle, and square waves, noise, etc.) (iv) cutting and pasting of 
audio clips
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PREREQUISITES: 

This experiment relies heavily on digital sound processing software. You should be familiar with
the Windows environment before attempting the experiment. If you have no prior experience
with digital signal processing please make sure you read the short selection in the Cool Edit
manual entitled “A Short Course in Digital Sound Processing”.

The experiment also requires a bit of background knowledge in music. Ideally you should play a
musical instrument and be familiar with basic musical theory terms (eg.  perfect fifth, key
signature,  semitone, middle C).

INTRODUCTION: 

There is a tremendous variety of experiments that can be done with the equipment in the Physics
of Music laboratory. References 1 and 2 above contain discussions of many possible
experiments. Please look through these books for ideas and discuss what you would like to do
with your demonstrator or with a  lab coordinator. Alternatively, we outline a few basic
experiments below.

Regardless of what you choose to do in this lab, it is almost certain that you will, at some point, 
need to  measure the frequency of sounds very precisely. Therefore, before doing anything  please
complete the following short exercise:

Preliminary exercise: Frequency measurements

Measure the frequency of a tone using the following two methods. Do your two results agree?
Which method is better? Can you suggest a reason why?

Method 1
 Record a sound. Then select and  zoom in on a selected region that is small enough for you to
see individual oscillations. Count the number, N, of complete oscillations in this region, and
measure the duration, T, of this region. The frequency, f,  is just N/T. Calculate the uncertainty in
f based on your estimate of the error in N and T.

Method 2
This method uses a numerical algorithm called a Fast Fourier Transform to determine the
frequency components in a sound. (See the Physics of Sound lab writeup for some background
information on Fourier analysis.)
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Select a region of recorded sound, then type alt+z (or select  frequency analysis from the options
menu bar item). A graph of the frequency distribution will appear, along with a listing of the
loudest  frequency component in the left and right channel. You may take the reading error in this
frequency to be one half of the last place quoted. Measure the frequency in several nearby regions
to estimate the standard deviation.

NOTE: You may find that you can reduce  reading errors  slightly by reducing the sampling rate
of the digital recording software. (eg use a sampling rate of 8000 instead of 44000 Hz.) However
be sure to  remember that the maximum frequency a digital system can record is one half the
sampling rate.

EXPERIMENT SUGGESTIONS

Experiment 1: OVERTONES

The notes generated by most acoustic instruments are generally not simple sine waves. Instead
the notes are made up of several different sine wave components, or overtones. Provided the
instrument produces a relatively steady tone, there is usually  a simple relationship between the
frequencies of these overtones: the frequency of  all the overtones is an integer  multiple of the
lowest frequency component, the fundamental. Thus if one plays a note of fundamental
frequency 440 Hz on a guitar, components of frequency 880Hz, 1320 Hz, and so on, will also be
present. Can you suggest a physical reason why this might be so?

Determine the amplitude and frequency of overtones present in the sounds  produced by a
number of musical instruments. (Use the alt+z frequency analysis function to produce a graph. 
Then use the mouse to move the cursor around and read off peak locations.)  Plot your data to
determine if the overtone frequencies are all an integer  multiple of a common fundamental
frequency. On the same plot indicate the amplitude of the various overtones.

Curiously enough, the human ear-brain system is capable of determining what the fundamental
frequency is even if it is not present in the overtone series! Try to verify this for yourself: use
either the analog Fourier synthesizer, or the tones function in the Cool Edit generate menu item
to generate a  tone made up of the components fo, 2fo, 3fo ....etc.. Then generate the tone again,
but this time with the amplitude of the fo component set to zero. What pitch does your ear
perceive?

Some notes on some  acoustic instruments (eg. violin, oboe) make use of this phenomenon. Look
at the overtone structure for a number of different notes in the instruments available to you and
try to find cases where the amplitude of the  fundamental is small.  Changes in embouchure (for
woodwinds and brasses) or bowing speed and pressure  (for the strings) can change overtone
structure substantially.  Try describing some of these changes qualitatively. (eg.  What conditions
lead to particularly small or large fundamentals?)
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Figure 1. The sum,�tot(t), of two sin waves (equation 1) of similar frequency.

Experiment 2: BEATS

If two sine waves of equal amplitude, A,  but of different frequencies, f1 and f2, are added
together:

�tot = A sin(2�f1t) + Asin(2�f2t)

the result is, using an elementary trigonometric identity,

                �tot = 2A cos[2�t(f1-f2)/2] x  sin[2�t(f1+f2)/2]              ... (1)

A plot of this function is shown in figure 1.  The high frequency oscillations correspond to the 
sine  term, and have a frequency of (f1+f2)/2, which is just the average frequency of f1 and f2. 
This is the pitch your ear hears. The amplitude of the waveform is determined by the much more
slowly varying cos term which has a frequency of (f1-f2)/2. The periodic changes in amplitude
at this latter frequency are called beats.

                              ___Time interval  ___

�tot(t) Between beats 

t

Combine two sine waves and listen to the result by using the tones function in the Cool Edit
generate menu item. To see and hear beats you will need two frequencies relatively close to each
other (say 1.00 and 1.01 times the fundamental frequency). Check to see if the main and beat
frequencies are consistent with the above equations.

If you have access to a stringed  instrument play the same note on different strings
simultaneously. Slightly detune one of the notes until you hear beats. Try to  record the result and
measure the beat frequency. 

When two tones from a musical instrument are sounded it is not just the fundamentals that will
beat, but all of the overtones as well. Based on table 1 what should the beat frequency be between
C4 and G5? (C4 is middle C, G4 is the G above middle C, G5 is one octave above G4 and so on.) 
Try to measure the beat frequency for this or other intervals on the Yamaha keyboard and
compare with what you expect.
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C4 D4 E4 F4 G4 A4 B4 C5

261.6 293.6 329.6 349.2 392 440 493.9 523.2

Table 1.  Frequencies (in Hz) of the notes in the C major scale. (Equal tempered tuning)

Experiment 3: MUSICAL SCALES

A  musical scale is a set of tones that blend together in an “aesthetically pleasing” way.  What
this  means is  that there are at least as many different scales in existence as there are different
cultures! Two types of scales that have seen a good deal of usage in occidental music  are the Just
Diatonic and the Equal Tempered scales. These two scales are based largely on the premise that
“aesthetically pleasing” means that beating between notes (and their overtones) of the scale
should be as small as possible.

The Just Diatonic Scale

The Just Diatonic scale, which came into being in the 17th century,  is based on two fundamental
intervals: the octave (frequency ratio 2:1) and the perfect fifth (frequency ratio 3:2). (“perfect”
simply means that the frequency ratio corresponding to the interval is a simple fraction.)To get
the notes in the Just Diatonic scale we take a base note, the notes which are a perfect fifth above
and below this base note, and the first five overtones of these three notes. These notes cover a
very wide range of frequencies. To bring all of the notes into the octave above our base note, we
successively divide or multiply their  frequencies by 2. It turns out that when this is done (see
reference 3), and the resulting notes are arranged in order of increasing pitch we arrive at the
frequency ratios shown in table 2. Table 2 also shows the resulting note frequencies when C4 is
taken as the base note. Because all the notes in this scale are derived from the overtones of three
harmonically related notes, beating between notes of the scale is minimal. The scale has a serious
drawback however:  if we use the same process as described above to create a scale with a base
note other than C4 (D4 for example) we get a series of notes whose  frequencies are different from
the notes in the C4 scale. Thus if one uses the Just system every key signature requires a
differently tuned instrument. A keyboard using the Just system would require hundreds of keys!
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C4 D4 E4 F4 G4 A4 B4 C5

frequency ratio
relative to base note 1 9/8 5/4 4/3 3/2 5/3 15/8 2

frequency (Hz) of Just
Diatonic scale notes
(based on A4= 440Hz)

264 297 330 352 396 440 495 528

Table 2. Frequencies and frequency ratios (relative to the base note) for notes in the Just
Diatonic scale.

Try playing  this  scale by  using the generate tones menu item of Cool Edit. Does it sound
different from the diatonic scale you are use to? If so, try to describe the differences qualitatively.

The Equal Tempered Scale

The Equal Tempered scale is a 12 note scale from which Diatonic scales may be constructed in
any key. Thus a keyboard based on the Equal Tempered scale requires  far fewer keys than a Just
system keyboard. The main disadvantage of the equal tempered tuning is that the only perfect
interval in this scale is the octave. All other intervals are slightly mis-tuned. This led to a great
deal of discontent when the scale was first introduced. For example, in The Philosophy of Music
(1879), William Pole wrote:

The modern practice of tuning all organs to equal temperament has been a fearful detriment to their
quality of tone. Under the old tuning an organ made harmonius and attractive music, which it was a
pleasure to listen to. . . . Now, the harsh thirds, applied to the whole instrument indiscriminately, give
it a cacophonous and repulsive effect.

Nevertheless virtually all keyboards today (including the Yamaha synthesizer in this lab) use
equal temperament tuning.

The Just diatonic scale discussed above may be thought of as the following series of intervals:  T
T S T T T S where T stands for “tone” and S stands for “semitone”.  The frequency ratio
corresponding to a tone is roughly twice that corresponding to a semitone. Thus an octave  spans
a total of 12 semitones. The equal tempered system assigns a fixed frequency ratio, Rs, to each of
these semitones. Thus the frequency of a note one semitone above a note of frequency f0 is f1 =
Rsf0. The frequency of a note two semitones above f0 is f2 = (Rs)

2f0 and so on. In general, a note
which is n semitones above f0 has a frequency given by:

fn = (Rs)
nf0.



PHYSICS OF MUSIC

 Since an octave corresponds to a frequency ratio of 2:1, (Rs)
12 = 2, or 

Rs =
12
� 2

Thus a  plot of ln( fn ) vs n should yield a straight line. What should the line’s slope be? Try
measuring and plotting the frequency of a number of synthesizer notes to test your prediction.
Now sing or play a scale on an acoustic instrument (not a keyboard) and make a similar plot. 
Which fit  yields a better �2. Why? Alternatively, you may find it interesting to compare  the
pitches used by professional musicians  with the equal tempered scale. Keyboard pitches will
naturally be close to equal tempered. However vocalists, string players and some woodwind and
brass players often use perfect intervals.  You can use Cool Edit to record and frequency analyse
material recorded on cassette tape and/or CD.

Experiment 4: TRANSIENT START-UP and DECAY of TONES

A large body of research (see reference 2 for an overview) suggests that one of the most
important characteristics of musical instrument tones is the envelope that defines their start-up
and decay. It is found that the first fraction of a second of a note is what allows the human ear to
distinguish between say a piccolo and a violin, or a tuba and a piano. There are plenty of
experiments that can be done involving transients. Try to think up a few yourself, or try the
suggestions below:

(i) Use Cool Edit to qualitatively explore the difference in startup transients between different
sounds. How long does it take to go from the start-up of a note to a steady tone? Does the note
decay exponentially? If so what is the time constant? Measure the envelope shapes and/or time
constants of a variety of percussive sounds.

(ii) Try “gluing” the startup of a clarinet note to the steady state tone generated by, say, an
electric guitar. (Use cut and paste in Cool Edit’s edit menu item.) What instrument does the
resulting note most closely resemble? Do this for a variety of combinations and come to some
conclusion about what is more important: the start-up transient, or the steady state tone.

(iii) How does the overtone structure of a note in the startup region compare with the overtone
structure in the steady tone region? (This will depend radically on what type of instrument you’re
looking at!)

(mf - 97) 


