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This document is a non-mathematical introduction to waves, harmonics, and standing waves. 

Introduction:

"Pongileoni's bowing and the scraping of the anonymous fiddlers had shaken the air in the great hall, had set 
the glass of the windows looking on to it vibrating: and this in turn had shaken the air in Lord Edwards' 
apartment on the further side. The shaking air rattled Lord Edwards' membrana typani; the interlocked 
malleus, incus, and stirrup bones were set in motion so as to agitate the membrane of the oval window and 
raise an infinitesimal storm in the fluid of the labyrinth. The hairy endings of the auditory nerve shuddered 
like weeds in a rough sea; a vast number of obscure miracles were performed in the brain, and Lord 
Edwards ecstatically whispered `Bach!'" -- Aldous Huxley, Point Counter Point.

Pythagoras' Discovery of the Mathematics of Harmonic Relationships: 

Pythagoras and his school did experiments to discover the relations between musical notes.The pitch of a 
note being played on, say, a guitar depends on:

●     The length of the string.
●     The tension of the string.
●     The material the string is made of.

Pressing the finger onto the string clamps the string onto the metal fret to the left of where the finger is 
pressed. The effective length of the string become the distance between the fret and the bridge on the left 
hand side. If we say the length of the string is one in some system of units, we show the effective lengths of 
the string for each of the notes in the scale. These harmonious "consonant" lengths were discovered by 
Pythagoras.
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The lengths are related to each other by the ratios of whole integers. In fact, the Pythagoreans believed that 
this was a general principle of the universe: everything is related by the ratios of whole integers. Thus, the 
cosmos sings in harmony, the "Music of the Spheres."

The Pythagoreans also discovered the existence of irrational numbers. For example, the square root of 2 is:

1.414213562...

The ellipsis (...) indicates that the decimals never end or repeat. There are no integers i and j for which i/j 
equals the square root of two. These irrational numbers were considered such a blot on the perfection of the 
universe that knowledge of their existence was suppressed.
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Another Pythagorean Image

The universe as a monochord, by Fludd, 1627. From 
Heninger, The Cosmographical Glass, pg 133.

Allowed vibrations of a string fixed on both ends

If a string is fixed on both ends, then the only waves that can occur are those with zero amplitude at those 
fixed ends; such points of zero amplitude are called nodes. Below we show four of the infinite number of 
vibrations with a node at each end. These vibrations are called standing waves.
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You may animate any of the above four images by clicking on it. If you are using a relatively modern 
browser, the animation will appear in a separate window; close that window whenever you wish. If you are 
using an older browser, the animation will appear in this window; to return here, use the Back button on 
your browser. 

The first mode determines the note the string is tuned to. It is the fundamental mode of vibration for the 
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string. All of the higher order vibrations are called by musicians the "overtones". The relative amount of the 
overtones determines the musical timbre that distinguishes, say, a violin and a guitar that are playing the 
same note. 

If the string's tension, material and length is such that the first vibration shown, labeledA0, is vibrating at 
440 Hz, then the string is playing the note Concert A.

The next allowed vibration, labeledA1, has a a distance between adjacent nodes of exactly one-half of the 
distance of the A0 one. Thus, this vibration will be at 880 Hz, which is the note A one octave above Concert 
A. The next shown standing wave, labeledE1, will produce the note E, while the last shown standing wave 
will produce the note C#. Musicians will recognise that these notes make up the A chord.

Most of the allowed overtones for a vibrating string generate one of the notes of the chord, while others 
represent the minor seventh, the ninth, etc. of the chord.

The ear takes the complicated sound wave from, say, a musical instrument and measures the relative 
amounts and phases of the overtones; the brain then recombines this information into a perception of the 
timbre of the note.

Fourier's Theorem

We have just seen that the complex vibration of a string can be represented as a sum of the fundamental 
vibration and the overtones. Fourier proved that any vibration can be similarly be represented. We illustrate 
by building up a so-called "sawtooth" shaped wave, which looks like this: 
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We now take the fundamental and the first harmonic and add them. For those with color monitors, the 
fundamental is in green and the harmonic is in blue. The sum of these two is in red. 

 

The sum of the two vibrations in the above graphic looks roughly like the sawtooth. We now take that sum, 
represented now in green, plus the next overtone in blue and show the sum of these as the red line: 
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The above is clearly getting closer to the desired shape. Finally, we jump to showing the fundamental plus 
the first 9 overtones. This clearly looks even closer. We can get as close as we wish to the desired sawtooth 
shape by adding more and more overtones. 
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Here is a somewhat more musical example 
of the same theorem. The figure to the right 
shows the amplitude versus time for a sine 
wave, which we imagine is oscillating at 
440 Hz. As shown, this corresponds to the 
wave repeating its motion every 0.00227 
seconds; this number is called the period of 
the oscillation. You may listen to a 24k wav 
format file playing that note by clicking 
here. This is a fairly dull, "electronic" 
sound.

Technical note: one over the period is the 
frequency. In this case, then, 1/0.00227 = 440.

The figures to the 
right shows a single 
period of that simple 
sine wave, plus four 
"overtones;" the 
relative amplitudes 
of the four waves is 
not arbitrary. 

For a 440 Hz 
fundamental 
vibration, the 
overtones occur at 2 
× 440 = 880 Hz, 3 × 
440 = 1320 Hz, 4 × 
440 = 1760 Hz, 5 × 
440 = 2200 Hz, 6 × 
440 Hz = 2640 Hz, 
etc. You might 
notice that the 2200 
Hz vibration is 
missing from the 
group to the right.
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This figure shows 
the sum of those five 
simple waves. A 24k 
wav file of the sound 
wave that looks like 
the lower figure is 
available here. With 
some imagination 
you might think it 
sounds a little bit 
like an oboe. Adding 
more overtones 
could make it sound 
more like a real 
oboe. For 
comparison, a 71k 
wav file of a real 
oboe is available 
here.

Whether it sounds like an oboe or not, though, the overtones are clearly adding a timbre to the note, making 
it more interesting.

Even this "simple" wave form, with only five vibrations, shows some fairly complex behavior. Each 
overtone is vibrating at a different frequency from the other overtones and the tonic. If the sound wave is 
vibrating in time as shown above, that oscillation is related to a wave traveling by in space. A 51k animation 
of a wave traveling from left to right in space and the corresponding vibration in time at a particular place is 
available here. By "following the bouncing ball" you can see that there are times when the five sinusoidal 
vibrations combine to give a relatively large total amplitude, while at other times they tend to cancel each 
other out, giving a relatively small total amplitude. This is responsible for the "quiver" you may have 
noticed in the synthesized oboe-like tone above.

You may wish to know that the relative amounts and phases of the fundamental and overtones in the above 
example were determined by sampling a recording of an actual oboe playing the note Concert A.
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Allowed Vibrations on a Circular Drum Head

  

  

You may view an animation of any of the four images above by clicking on it. Just as for the previous 
animations, in a modern browser the animation will be in a separate window while older browsers will show 
it in this window.

One thing to notice in the above is that the overtones are not related to the fundamental mode via harmonic 
ratios of whole numbers. For example, the first overtone is vibrating at 1.59334... times the fundamental. 
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Thus, although drums are tuned to a note corresponding to the first shown mode, the overtones are not 
related musically to the fundamental and thus the drum sounds "percussive" 

The banjo's distinctive sound comes because it combines the harmonic overtones from its vibrating string 
with the percussive overtones from its drum head.

Resonance

Some stringed instruments, such as the banjo or sitar, have drone strings which sometimes or usually are not 
directly played. However the sound waves and/or vibrations of the instrument itself causes those strings to 
vibrate in resonance with the notes that are actually being played.

A particularly dramatic example of resonance occurred on November 7, 1940 when a breeze excited a 
resonance in a new bridge at Tacoma Narrows, Washington, causing the bridge to collapse. An mpeg video 
clip of the bridge oscillating in resonance is available here; total file size is about 700k.

If you have access to a real piano, you may do some experiments on resonance and standing waves.

Press slowly and then hold down the key of a bass note, say G2; no sound is produced but the damper 
remains lifted off that string. Then hit hard and staccato the key of the note one octave above, G3. After the 
sound from that string has stopped you will hear the G2 string sounding G3. Repeat by hitting the twelfth, 
D4, C4, B4 etc. If you hit, say, A3 there will be no effect. This is because A3 is not an upper harmonic of 
G2.

Again lift the damper of the G2 string. Simultaneously strike D4, G4 and B4. After their sound has 
disappeared it is possible to hear the G2 string vibrating in all three modes simultaneously. Thus that one 
string is playing a full G major triad.

Again lift the damper of the G2 string. Hit with your right underarm all black and white keys of two or more 
octaves above G3. After the initial burst has decayed the G2 string vibrates beautifully in the dominant 
seventh chord G3, D4, G4, B4, D5, F5, G5, …

We have now shown that a given string can vibrate in different modes. Now we will prove that a string, 
sounded normally, does vibrate in many harmonic modes. Pick a bass note, such as G2 but slowly press and 
hold the G3 key. Then sound a loud staccato G2. The G3 string starts vibrating in its own fundamental mode 
G3. The reason is it has been excited by the first overtone of the vibrating G2 string. Similarly, you may 
excite resonances in the keys D4, G4, B4, D5, … etc. Each one will be excited by the corresponding 
overtones of the G2 string.

http://www.upscale.utoronto.ca/PVB/Harrison/Vibrations/Vibrations.html (11 of 12) [24/03/2003 10:02:32 AM]

http://www.upscale.utoronto.ca/PVB/Harrison/Vibrations/Tacoma.mpg


Standing Waves

Temperament

Above we showed the placing of frets on a guitar if it had been built by a Pythagorean. Such a guitar would 
play beautifully in some keys, but not in others! The relationship between musical notes is called the 
temperament. A Flash document exploring this further has been prepared. It requires that your computer 
have the Flash player of at least Version 6, and that you have sound. The demonstration has a file size of 
151k and will appear in a separate window: to access it click here.

Reference

Juan G. Roeder, Introduction to the Physics and Psycholophysics of Music, 3rd ed. (Springer Verlag, 
1995), ISBN: 0387943668.

This book has hardly any mathematics, but a wealth of information on not only the topics of this "page" but 
a great deal more. Highly recommended.
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This document was written by David M. Harrison, Dept. of Physics, Univ. of Toronto, 
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This document is Copyright © 1999, 2000 David M. Harrison. This is version 1.12, date (m/d/y) 03/24/03.

This material may be distributed only subject to the terms and conditions set forth in the Open Content 
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