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Ã Introduction

In the Digital Filters and Z Transforms  chapter we introduced inverse filters as a way of undoing
some instrumental effect to determine the "true" signal. Later in that chapter, we saw that if we have a
filter which has a large number of terms in it:
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then we can do "another implementation" of the same filter in terms of its inverse that may have fewer
significant terms in it:
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In this chapter we return to the original motivation for discussing these filters, in particular the problem
of removing noise from some signal.

For generality, we assume that there are two processes that effect the signal that we measure mk. 

First, assume that the apparatus is not perfect but instead smears out the signal somewhat. If the "true"
signal is tk and the response function of the apparatus is rk then we get a smeared out signal sk:

sk  r k  t k x Sj  Rj �Tj
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where as usual we write *  for convolution and display the result in both the time domain and the fre-
quency domain. Also, as usual, we assume the sampling interval ' is one; otherwise sums in the time
domain below need to be multiplied by ' and sums in the frequency domain need to be divided by '.

Second, assume that the smeared out signal has had noise nk added to it, giving us the measured signal
mk:

mk  sk � nk

In the absence of noise, if we know the response function of the apparatus we already know how to find
the true signal:
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Now we want to find the optimal Wiener filter, wk  or Wj which, when applied to the measured signal
and deconvolved by the instrument response, gives us an estimate of the true signal:
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Note that Wj  is an inverse filter: it gives us the smeared signal from the apparatus from the measured
signal.

Ã Least-Squares Regression

Above we set up the problem we wish to solve, finding an estimate t
q

k  of a true signal tk. Here we
examine in what sense our estimate is close to the true signal.

The residual is the difference between the true signal and the estimated one:

Residual k  t k � t
q

k

and the sum of the squares of the residuals is:
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Least-squares regression, used for example by most curve fitters, minimises the SumOfSquares by
taking a series of derivatives of it with respect to the parameters we are trying to determine and setting
each equal to zero:
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For the case of fitting data {{ x1, y1}, {x1, y1}, ... , {x1, y1}}  to, say, a straight line:

y  m x � b

the residuals are:

Residual k  yk � +m xk � b/
and the minimum of the sum of the squares of the residuals is the solution to the equations:

�b SumOfSquares  0

�m SumOfSquares  0

For this example, the solution of the equations is analytic.

For the Wiener filter, we similarly want our estimate of the true signal t
q

k to be close to the actual value
tk in the same sense that the sum of the squares of the residuals is a minimum.
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There is a potentially important caveat in this and all least-squares techniques. This is that they are not
robust, by which we mean that a single "wild" data point can seize control of the whole analysis, giving
non-sensical results.

This is similar to the fact that the mean or average is not robust, although the median is. This similarity

is not coincidental. Say we repeat a measurement of, say, the diameter of a metal hoop n times:

�x1, x 2, x 3, ... , x n�
Call the estimated value xrr. Then the sum of the squares is:
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The minimum is when:

�xr SumOfSquares  2 Å
k 1

n

+xk � xr/  0

or:

+x1 � xr/ � +x2 � xr/ � +x3 � xr/ � ... � +xn � xr/  0

Therefore:
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But this is exactly the mean. Therefore, the mean is a least-squares estimate of the expectation value for
repeated measurements.

Ã Implementation

We have just seen that we wish to find a Wiener filter Wj  that minimises:
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where:
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But the measured signal Mj  is just the smeared signal Sj  plus the noise Nj  so we are trying to minimise:
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Now, this has a term involving the smeared signal and a second term involving the noise, and includes
all the frequencies Z j . However the smeared signal and the noise are uncorrelated: this is practically
the definition of noise. Thus if the above equation is to be a minimum it must be a minimum for each
and every term in the sum.

We have Mathematica take the derivative of a term with respect to the Wiener filter and then solve for
when that derivative is equal to zero:
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This is the optimal Wiener filter. Note that the answer does not contain the "true" signal Tj . Thus the
filter can be determined independently of the response function of the apparatus Rj .

In order to determine the Wiener filter, we realise that since the smeared signal and the noise are inde-

pendent, the power 7 is proportional to the sum S2 + N2, i.e. the cross terms 2SN are zero. If we mea-
sure a time series such that the Nyquist frequency is much greater than the maximum frequency of the
smeared signal, then a log-log plot will look like the continuous line in the following figure:

ln Z
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M2

N2
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The point is that by looking at the measured signal at large frequencies, we can extrapolate back to
make a reasonable eyeball estimate of the noise at all frequencies. Similarly, for small frequencies we
can similarly estimate the smeared signal at larger frequencies; this estimate should match the mea-
sured signal squared minus the noise signal squared.
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Ã Conclusion

The Wiener filter implementation is not as sophisticated as the methods we discussed in the previous
chapter. However there are some things in its favor.

First, it uses the great power of our visual system as a natural integrator and extrapolator to determine
the noise signal. Despite the claims sometimes seen in glossy advertisements, our visual system is still
able to beat computers in pattern recognition tasks.

Second, it turns out that the Wiener filter differs from the true optimal filter by an amount that is sec-
ond order in the precision to which the filter is determined. This means that even a fairly sloppy determi-
nation can still give excellent results.

In fact, Wiener filters are one of the tools of choice in removing noise from photographic images.
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