
The Physical Pendulum in an Advanced
Undergraduate Course in Mechanics

Solomon Castillo Douglas, David M. Harrison†

and Theodore G. Shepherd

UPSCALE: Undergraduate Physics Students’
Computing and Learning Environment

Department of Physics
60 St. George Street
University of Toronto

Toronto, Ontario, Canada M5S 1A7

We have been using a series of computer-based prob-
lem sets on the physical pendulum in our third year
undergraduate course in classical mechanics for three
years. The problem sets investigate the physics of
this system in ways not easily accessible without this
technology, and explore various algorithms for solving
mechanics problems in a Hamiltonian formulation.
We shall describe some of our successes and failures
in developing this package.

INTRODUCTION

The physical pendulum treated within a Hamiltonian formulation is a
natural topic for study in a course in advanced classical mechanics. For the
past three years we have been offering a series of problem sets studying this
system numerically in our third year undergraduate courses.

Our computational physics is based on Mathematica1 with some C com-
municating with Mathematica, although nothing in the body of the paper
below is dependent on that choice. We have nonetheless found this system,
and particularly its graphics, to be a good one for use with undergraduates.
Some information on the hardware/software of our facility and the implemen-
tation of this package is provided in the Appendix.

†
To whom correspondence may be addressed. The electronic address is:
harrison@faraday.physics.utoronto.ca.



- 2 -

Our work with our students has focused on two main areas: (I) investi-
gation of the physics of the pendulum; and (II) exploration of various forms of
Runge-Kutta algorithms to solve Hamilton’s equations. Initially these were
both discussed in our mechanics course; the second has now been split off into
a separate offering on computational physics at the third year undergraduate
level. Both are described below.

A crucial question for this sort of application is how to prevent the stu-
dents from becoming mired in the details of a computing environment. Our
facility provides a locally written menu system that allows the students to
edit and run Mathematica program files without ever having to know a file
name or directory structure; although other approaches are available to our
students, the overwhelming majority of them find this environment to be the
most convenient. We supply a written tutorial of about seven pages on ways
to use our locally written packages on the pendulum; with this plus a small
amount of classroom time, most students complete their problem sets with
minimal supervision.

By the time they reach their third year of studies our students have
already used our computing facility, although usually not the numerical
methods component of it that is the foundation of the work described here.
Early in their first year they take a required computerised test on error anal-
ysis.2 A variety of fitters, graphers, etc. are available in support of our labora-
tory program; this usage is optional but the overwhelming majority of our stu-
dents regularly use these tools.3,4 In their second year they write a required,
nearly-trivial program in Mathematica. Some students have made extensive
but non-required use of our Mathematica environment and/or taken courses
in the Department of Computer Science. For most, however, this is their first
serious exposure to this part of our computing environment. Thus, it is fair to
say that at the beginning of this work our students have little of no knowl-
edge of Mathematica.

Each of the two projects described below are designed to take roughly
six hours of computer connect time to be completed. In the first project the
students work in pairs, while in the second they work alone. The second proj-
ect is also supported by over one hour of formal lectures on the theory of
Runge-Kutta and other integrators of differential equations. Although we
observe fairly large variations among our students, we seem to have ‘dialed
in’ the requirements fairly realistically.



- 3 -

I. THE PHYSICS OF THE PENDULUM

The technology allows the students to calculate a time series of position-
momentum pairs in a matter of seconds; it is this fact that allows them to
engage in a series of what if explorations. The students are encouraged to
treat these problem sets as a series of experiments in which the result is
unknown until the data is calculated. We typically ask the students to calcu-
late on the order of 1000 points using a supplied fourth-order Runge-Kutta.

Using the non-dimensional Hamiltonian:

H (q,p) =
2

p 2
+ (1–cosq) (1)

we first ask the students to produce a number of such time series (7 or so) for
q 0 = 0 and π, and p 0 ranging evenly from -2 to +2 (including p 0 = 0). Plotting
the phase portrait of all of these on a single graph allows them to develop a
geometric as opposed to an algebraic understanding of the dynamics. Figure
1 shows some sample output. The students first identify the separatrices
which divide the phase space into regions of closed and open orbits, corre-
sponding physically to oscillations and rotations of the pendulum. The region
inside the separatrices has a "bowl shaped" geometry around the fixed point
(or equilibrium state) at the center; this implies that the fixed point is non-
linearly stable. The region near the fixed point where the separatrices cross
has a "saddle shaped" geometry, implying that it is unstable.

Although there is nothing revolutionary about such plots when they
appear in textbooks,5 we believe the ability of the student to produce them
from their own initial conditions in a few minutes makes a valuable educa-
tional impact not possible by looking at a figure in a book.

We then turn our attention to a system that we do not think could be
discussed at all in this course without our computational facility: the physi-
cal pendulum with the support point oscillating sinusoidally in the vertical
direction. This system is not solvable analytically, and exhibits both chaotic
as well as non-chaotic behavior. The ‘perturbed’ Hamiltonian is:

H (q,p) =
2

p 2
+ (1+h cosγt)(1–cosq) (2)

We supply a package which returns solutions for user-specified initial condi-
tions and parameters which are Poincaré sections, ie: position-momentum
pairs for every gravitational period t = t 0 + 2mπ/γ (where m is an integer),
rather than every timestep. Thus the sections are time ‘slices’ of the three-
dimensional (q,p,t) extended phase space.



- 4 -

In a Poincaré section chaotic solutions are visible as clouds of points,
while non-chaotic solutions are visible as closed curves. The closed curves
correspond to tori in the extended phase space.

We lead students to discover that for h << 1 the separatrices of the
unperturbed pendulum break up into regions of chaos, while the closed curves
around the stable fixed point of the unperturbed pendulum are only slightly
deformed. Figure 2 shows a typical graph. The students are asked to explore
how the width of the chaotic region depends on h for a fixed value of γ.

The students find values of h and γ for which there are secondary tori
that do not encircle the origin. Once found, producing Poincaré sections for
values t 0 = 0,π/(2γ),π/γ,3π/(2γ) leads to an understanding of the topology of
the extended phase space.

We also study parametric resonance, which occurs when the frequency γ
or one of its harmonics is close to twice the natural frequency of the pendu-
lum. This destabilizes the fixed point q = 0, p = 0, and is what makes it pos-
sible to swing on a swing. Figure 3 shows an example. The Poincaré sections
allow a determination of the limits of instability and their dependence on h,
which can be directly compared with perturbation theory.

Finally, we have the students demonstrate that for γ >> 1 the perturba-
tion stabilizes the fixed point q = π, p = 0, which is unstable in the unper-
turbed system. The value of γ for which this occurs can be determined and
compared with theoretical values.

II. RUNGE-KUTTA ALGORITHMS

The other aspect of our work on the pendulum is an investigation of the
Runge-Kutta algorithm being used to solve the equations of motion for the
unperturbed case. As mentioned above, this work originally occurred in our
course in classical mechanics but has now been split off into a separate offer-
ing on computational physics.

We provide the students with code to choose the order of the Runge-
Kutta to be 1 (Euler), 2, 3, 4, 5 or a symplectic algorithm for the unperturbed
pendulum.6 We measure the accuracy of the computation by the degree to
which the calculated energy is conserved. Figure 4 show some sample output.

The symplectic algorithm is an area-preserving (ie. Hamiltonian)
discretization of the dynamics. We particularly like the fact that this algo-
rithm is suggested by the physics of the problem, not the numerical methods.



- 5 -

For speed reasons the actual integrator is coded in C communicating
with Mathematica. In the first year of this problem set we provided the stu-
dents with the code for a fourth-order Runge-Kutta and asked them to modify
that code to produce lower order integrators. Despite the fact that the modifi-
cation involved mostly removing code, this was much too difficult for many of
our students and was in general a disaster. In the second year of the project
we coded all orders and asked the students to choose the order by modifying a
C pre-processor #define appearing prominently near the top of the C file.
This works well. An advantage of this approach is that the program is
displayed by the editor used to modify the define; students who are so
inclined may examine it to see how the program works, while others at least
have the program in front of them as they hunt for the pre-processor direc-
tive.

We then ask our students to calculate a time series for a closed orbit
that covers several tens of periods, and take the Fourier transform of the posi-
tion. In addition to the usual questions of sidebands and aliases, we have the
students use the central frequency to calculate the period and compare it to
the exact value, as given by:7

T = 2√2
0
∫
Q

(cosq – cosQ)1/2
dq (3)

where Q is the maximum amplitude. Naturally, we ask the students to evalu-
ate the integral in software; included in this is a comparison of Mathematica’s
built-in numerical integrator with a direct numerical evaluation using a
repeated midpoint rule. We finally ask the students to investigate experimen-
tally how the sharpness of the central peak depends on the size of the
timestep ∆t used in the computation.

III. CONCLUSIONS

We have been pleased with the contribution these projects have made to
the learning of our students. Both formal and informal assessments by the
students confirm our impressions: the students are aware of the pedagogical
value of this work and, further, seem to have had a great deal of fun in com-
pleting it.

A possible criticism of our work is that the material discussed above in
§II is fairly computeresque for a course in classical mechanics, which is where
it was for the first two years. Although we tend to feel that exposing physics
specialists to some details of computational physics is almost always
worthwhile, the fact is that we used our students as ‘beta testers’ of this



- 6 -

material for two years because we knew that our new course in computational
physics was to be added to the curriculum.

We conclude with a caution. We had on the order of 40 students doing
these assignments each academic year. Since we use a single multiuser/mul-
titasking UNIX computer and X-terminals, we find that if the hardware/soft-
ware is not capable of producing, say, a 1000 point time series in under five
seconds of cpu or so, then when many students are trying to do their work the
system backs up exponentially, leading to great frustration. We were fortu-
nate to have been able to significantly upgrade the power of our facility after
the first year; otherwise we would have been forced to ask considerably less of
our students than what is described above.

Experience with both this work and other assignments for our students
has led us to the formulation of the five seconds of cpu rule: if a quantum
of computation cannot be completed in this period of time, then it is likely
that we are making the students ask too much of the facility. The rule would
not hold for workstations or multiple PC’s, and would depend on the number
of X-terminals in use; we have 25 student X-terminals.

ACKNOWLEDGEMENTS

As is so often the case, it is our students who suffered through some of
our mistakes; we hope their learning compensates in some measure for their
frustration, and we thank them for their patience. The level of computing
described here would have been impossible without the donation of our cen-
tral compute server, a Hewlett-Packard 9000/750, by Hewlett-Packard (Can-
ada) Ltd., whose support we gratefully acknowledge. The other members of
the UPSCALE group in the Department have been very generous with their
time for discussion and advice about this project; they are Richard C. Bailey,
James R. Drummond, R. Nigel Edwards, William R. Peltier, John M. Pitre
and Pekka Sinervo. The symplectic integrator was coded by Djoko Wirosoe-
tisno.

APPENDIX

We have based much of our advanced undergraduate computing on
Mathematica under UNIX, with X-terminals as our primary display device.
Here we discuss some of the reasons for our software/hardware decisions, and
some of the implications.

The choice between Mathematica and Maple is a fairly religious topic
which we will avoid here; there are also proponents of other similar software
systems. Using one of these as a foundation for an undergraduate computing
system is attractive for a number of reasons. Foremost is their symbolic



- 7 -

algebra capability, although for a pedagogical application their excellent
graphics capabilities are also crucial. The fact that they are interpreted
encourages our students to engage in exploration, since they need not declare
variable names or do a separate compile step to see the results of a calcula-
tion. This choice also neatly sidesteps the C versus FORTRAN wars that con-
tinue to rage in most physics departments.

For the work described here, we found that Runge-Kuttas coded directly
in Mathematica were much too slow. Thus, we coded the actual integrators in
C, which then communicates with Mathematica. Our experience is that with-
out considerable support our students are not capable of working with C
directly, although programming Mathematica (and presumably Maple) is
quite within their reach.

Ease of administration is one of the main advantages of a UNIX/X-ter-
minal hardware configuration; running multiple workstations and/or PC’s
sounds very unattractive to one of us (DMH) who is responsible for system
administration of our facility. Since our students spend a lot of their com-
puter time ‘chewing on their pencil’ we can get away with many more X-ter-
minals for a given compute-server than would be possible for power users like
graduate students. This means that our cost per seat is comparatively low;
nonetheless a powerful computer is in the ‘engine room’ for those times when
it is required.

Finally, we all tend to conceive of software projects such as that
described here without adequately calculating the time involved. The effort
behind the work described here is non-trivial. Including false starts, bug
fixes, supporting documentation, etc. we probably have about five person-
months invested in this. Our code and documentation are available on
request; in addition these materials are available on the MathSource archive
maintained by Wolfram Research.8

REFERENCES

1. Wolfram Research Inc., Mathematica (Wolfram Research, 1993) Ver-
sion 2.2.

2. D. Harrison and J.M. Pitre, Phys. Teacher 21, 588 (1983).

3. D. Harrison and J.M. Pitre, Phys. Teacher 26, 156 (1988).

4. D. Harrison and J.M. Pitre, Comput. in Educ. 12, 261 (1988).

5. For example H. Goldstein, Classical Mechanics (Addison-Wesley, 1950),
p. 290.



- 8 -

6. Runge-Kuttas are probably discussed in every book on numerical meth-
ods. For the less well known symplectic integrator see R. Ruth, IEEE
Trans. Nucl Sci. 30, 2669 (1983), which formed the basis for our code.

7. For example I. Percival and D. Richards, Introduction to Dynamics
(Cambridge Univ. Press, 1982), p. 57.

8. The code and documentation are item number 0206-109 on the Math-
Source archive. One simple way to retrieve the materials is to send a
mail message stating Send 0206-109 to mathsource@wri.com.



Figure Captions

Figure 1: Momentum p versus angle q for the pendulum. Each time
series consists of 1500 points with a time step of .02. The ini-
tial conditions are q 0 = 0 and π, and –2 ≤ p 0 ≤ 2 in steps of
2/3. Every point is "doubled" as (q, p) and (q ±2π,p).

Figure 2: Poincaré section for the perturbed pendulum, illustrating
integrable and chaotic behaviour. Each time series consists
600 points, and the time step is .02. The initial conditions
are (q 0, p 0) = (π,0.1), (π,1),(π,–1), (π,2),(π,–2), (π/2,0), (0,1),
(0,2.2), and (0,–2.2). The time series is constructed by sam-
pling the system every period, 2π/γ, and the amplitude and
frequency of the perturbation are h = 0.1 and γ = 1.6 respec-
tively.

Figure 3: Poincaré sections for the perturbed pendulum, illustrating
parametric resonance. The amplitude and frequency of the
perturbation are h = 0.1 and γ = 2. The initial conditions are
(q 0, p 0) = (0.0001+nπ/10,0) for n = 0, 1, 2, ... , 10. Each time
series consists of 600 points, and the timestep is 0.02.

Figure 4: Plotting E - 1 versus time step for the unperturbed pendu-
lum. The initial conditions are q 0 = π/2, p 0 = 0, and we have
calculated 600 time steps each of size .02. If the calculation
conserved energy perfectly, E would be exactly one.

a. Third-order Runge-Kutta.

b. Fourth-order Runge-Kutta.

c. Symplectic algorithm (fourth-order accurate).










