
Uncertainty	  in	  Physical	  Measurements:	  
Module	  5	  –	  Data	  with	  Two	  Variables	  
Often data have two variables, such as the magnitude of the force F exerted on an object 
and the object’s acceleration a. In this Module we will examine some ways to determine 
how one of the variables, such as the acceleration, depends on the other variable, such as 
the force. 
 
Say we have collected data for the acceleration a of a cart of mass M for force F with the 
apparatus of Figure 1. We assume that the mass of the string and the pulley are 
negligible, and the pulley is frictionless. Then the force F exerted on the cart is equal to 
mg, where g is the acceleration due to gravity. We collect data for a number of different 
masses m. 
 
 
 
 
 
 
 
 
 

Figure 1 
 
We want to determine how the acceleration depends on the force. The acceleration is 
some function of the force: 
 

 a = f (F)                                                           (1) 
 
In this case the variable F is called the independent variable, it is the quantity that is 
being experimentally changed by changing the mass m. Then the variable a is called the 
dependent variable, and its value depends on the value of the independent variable. 
 
Table 1 shows the data for the experiment. The uncertainties were found using the 
techniques we learned about in Modules 2 and 3. 
 

F (N) a (m s-2) 
0.25 ± 0.03  0.6 ± 0.1  
0.74 ± 0.03  1.4 ± 0.1  
1.23± 0.03  2.4 ± 0.2  
1.72 ± 0.03  3.4 ± 0.3  

 
Table 1 
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Graphing	  the	  Data	  
 

There is probably no better way to explore 
data than with a graph. Figure 2 shows a 
graph of the first data point in the table: 
(F1, a1) = (0.25 ± 0.03, 0.5 ± 0.1) .   
The dot is at the values of the force and 
acceleration, and the length of the bars 
through the dot indicate the values of the 
uncertainties 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Sometimes the uncertainty in one of the 
two variables is zero or negligible. As an 
example, consider the temperature 
measurements we thought about in Module 
2. We wish to calibrate the digital 
thermometer that reads temperatures to the 
tenth of a degree with the better 
thermometer that reads temperatures to the 
hundredths of a degree.  So for a number of 
different temperatures we measure using 
both instruments. There is an uncertainty in 
our measurements of the temperature with 
the better instrument, but there is no 
uncertainty in the reading of the less good 
instrument: it reads, say, exactly 12.8 when 
we measure the temperature with the better 
instrument to be 12.820 ± 0.006 °C . 
Then the plot of the datapoint: 
    (reading, t) = (12.8, 12.820 ± 0.006 )  
is shown in Figure 3.  

 
Figure 3 

 
 
If there is only a significant uncertainty in one of the variables, as in Figure 
3, that uncertainty must be in the dependent variable, i.e. the one that is 
graphed on the vertical axis. 
 

 
 
 
 
 



 

Uncertainty in Physical Measurements         Module 5 – Data with Two Variables (Excel) 

3 

Figure 10 at the end of this Guide is a graph of all the data in Table 1. 

Activity	  1	  
 
If we assume Newton’s 2nd Law is correct for the data, then for a frictionless cart: 
 

 a = 1
M
F                                                           (2) 

 
Eqn. 2 is called a model of the physical system of Figure 1. From the equation, the slope 
of a straight line through the data points is equal to 1/M. 
 
Draw the best straight line that you can through all the data points. You have a “free” 
data point at the origin, since the acceleration is exactly zero when there is no applied 
force.  Considering that the uncertainties in the values of the data are saying that the 
experimenter believes that the actual value is probably within the range given by the 
uncertainties, does the line have to go through all of the rectangles defined by the 
uncertainties or only most of them? Explain.   
 
If the uncertainties in the data are based on a triangular probability distribution, what is a 
reasonable numerical value for the word “most”? What about for a Gaussian probability 
distribution function? 
 
Find the slope m of the line.  What are the units of the slope? 
 
Calculate M. What are its units?  
 
In finding the “best” straight line, you may have noticed that you can wiggle the ruler 
around a bit and still account pretty well for the data within the experimental 
uncertainties. Determine how much you can wiggle the ruler and still account for the 
data. Does the line with the maximum or the minimum slope have to go through all the 
bars representing the uncertainty, or only most of them? Explain. 
 
The amount of wiggle you can do with the ruler and still account for the data determines 
the uncertainty in the value of slope.  Determine what that uncertainty is. 
 
Finally, present your experimental determination of M including its uncertainty. Recall 
from Module 4 that if a quantity is raised to a power, z = xn , then the uncertainty in z is 
given by u(z) = nx(n−1)u(x) . Here M = m−1 , i.e. n = -1.   
 
You will want to staple Figure 10 with the lines you have drawn on it into your notebook. 
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Question	  1	  
 
Measuring the temperature t and pressure p of a fixed volume of gas and extrapolating the 
data to when the pressure is zero can find the value of the absolute zero. Figures 4a and 
4b show some student-collected data of such an experiment as reported by Taylor.1 
Which plot should be used to determine the value of absolute zero? Why? Note that you 
are not being asked to do the determination, although of course you may do so if you 
wish. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
 

                                                
1 J.R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley 
CA, 1982), 160. 
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You may be used to writing Newton’s 2nd Law as: 
 

F = Ma                                          (3) 
 
Although algebraically this is identical to the form we used in Eqn. 2, in 
terms of communicating the relationship between forces and 
acceleration it is misleading. Eqn. 3 implies that the independent 
variable is a which causes forces F. This is clearly not correct. Eqn. 2, 
then, best expresses the relation between force and acceleration: forces 
cause accelerations.  

Least-‐Squares	  Fitting	  
 
In Activity 1 you fit the data of Table 1 to a model by hand. The model was given by 
Eqn. 2, and you used the graph of the data to perform the fit and determine the value and 
uncertainty in the parameter 1/M. 
 
Often we use computers to do such fits numerically. The most common type of fitting is 
to a polynomial model: 
 

 
y = a0 + a1x + a2x

2 + . . .

= aix
i

i=0

N

∑
                                          (4) 

 
For example, if the model is a straight line, y = mx + b, then a0 is the intercept b, a1 is the 
slope m, and all other of the parameters aj are zero.  If the model is a parabola, 
y = c x2, then the only non-zero parameter is a2 which is c in the model. In general, the fit 
determines the values of the parameters ak that are non-zero. 
 
Say we are fitting to an arbitrary model: 
 

 y = f (x)                                                              (5) 
 
We have a series of values of the data: (x1, y1),(x2, y2 ), . . . ,(xN , yN ) . For each datapoint, 
the fitted value of the dependent variable, yi,fit, is given by: 
 

 yi,fi t = f (xi )                                                             (6) 
 
However, the experimental value of yi is unlikely to be exactly equal to yi,fit. We define 
the residual ri to be: 
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ri ≡ yi − yi, fi t
= yi − f (xi )

                                                         (7) 

 
Just as for the deviations we learned about in Module 1, for a perfect fit the sum of the 
residuals for all the data is zero.  However, again similar to the deviations in Module 1, 
the sum of the squares of the residuals is not zero. It is a measure of how much the 
model differs from the data. 
 
The most common technique for computer fitting of data to a model is called least-
squares. The name is because it finds the values of the fitted parameters for which the 
sum of the squares of the residuals is a minimum. 
 
There is a famous quartet of (x, y) pairs devised by Anscombe.2  We have prepared an 
Excel spreadsheet of the four datasets.  It is at: 
 
http://www.upscale.utoronto.ca/PVB/Harrison/GUM/05_ExcelVersion/Anscombe.xlsx 
 
Open the data set with Excel. Columns A and B are the x and y pairs for the first dataset, 
columns C and D the x and y pairs for the second dataset, columns E and F for the third 
dataset. and G and H for the fourth. 
 
Use Excel’s function LINEST to fit the first dataset to a straight line using least-squares 
by: 
 

1. Clicking on the empty cell A15. 
2. Hold down the shift key and click on the empty cell B19.  You now have selected 

a block of 10 cells, 2 columns wide and 5 rows deep. 
3. On the keyboard enter:  

 
                    =LINEST(B2:B12,A2:A12,TRUE,TRUE)  
 
You can use the mouse and shift key to select the relevant cells in columns B and 
A if you wish. 

4. Simultaneously hold down CTRL – SHIFT – ENTER 
 
 
The screen should now look like Figure 5. 
 
 
 
 
 

                                                
2 F.J. Anscombe, American Statistician 27 (Feb. 1973), pg. 17. 
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Figure 5 
 
There is a lot of information returned by LINEST, but we will concentrate on the five 
numbers that are labeled in the figure. 

Activity	  2	  
 
Fit the second dataset to a straight line, putting the result in cells C15 through D19. 
Similarly fit the third and fourth datasets to straight lines, putting the results under the 
data. 
 
If you just look at the values of the four fits, i.e. the slopes, the intercepts, their 
uncertainties, and the sum of the squares of the residuals, what might you conclude about 
whether or not the four datasets are almost identical? 
 
Now produce Scatter Plots of each dataset.  What do you now think about the similarity 
of the four datasets?  Is a straight line model appropriate for each of the datasets? 
 
What can you conclude about the relative importance of the numbers returned by a least-
squares fit compared to a graphical exploration of the data? 
 
Imagine we are fitting some data to a straight line: y = mx + b. If there is only one 
datapoint, then no such fit is possible: any line going through the datapoint is equivalent 
to any other line going through the datapoint.  If there are exactly two datapoints, then 
there is no doubt about the values of the slope and intercept: they are the slope and 
intercept of the line connecting the two points.  However, if there are three or more 
datapoints, then we can imagine a range of slopes and intercepts of lines that more-or-less 
are consistent with the data. 
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The degrees of freedom of a fit are the number of datapoints minus the number of 
parameters to which we are fitting, which is two for a straight line.  Fits with negative 
degrees of freedom are impossible. Fits with zero degrees of freedom are exact. 

Question	  
 

2. Say you are fitting the data of Table 1 to a straight line with an added parabolic 
term: 
 
a = mF + b + cF 2   
 
What are the degrees of freedom of the fit? 

 

Evaluating	  the	  Quality	  of	  a	  Fit	  
 
In Activity 2 we learned the graphs are an important tool in evaluating fits. Now we will 
learn about some quantitative ways of evaluating a fit. 
 
The sum of the squares of the residuals of a fit, ss, is: 
 

ss = yi − f (xi )[ ]
i=1

N

∑
2

                                                  (8) 

 
where we have fit the data to the model y = f(x) and there are N datapoints. It measures 
the “goodness” of the fit, with smaller values meaning a better fit.  But there is no 
objective way to determine if the value of ss is “small” or “large.” 
 
However, if the data have uncertainties in the dependent variable, u(yi ) , then we can 
weight each residual by 1 over that uncertainty, and form the sum of the squares of the 
weighted residuals. This sum is called the chi-squared, χ 2 . ( χ  is the Greek letter “chi” 
which rhymes with the word “eye.”) 
 

 χ 2 ≡ yi − f (xi )
u(yi )

⎡

⎣
⎢

⎤

⎦
⎥

i=1

N

∑
2

                                                 (9) 

 
Now a “least-squares” fit finds the minimum in the χ 2 , which may be for different 
values of the fitted parameters than the values found by minimising the sum of the 
squares of the residuals. 
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If the data are correct and the model is reasonable, the χ 2  should be roughly equal to the 
number of degrees of freedom.  If the χ 2  is much larger than the number of degrees of 
freedom, the fit is poor. If the χ 2 is much less than the number of degrees of freedom, the 
fit is too good to be true. 
 
Although you have learned in these Modules that almost all numbers used to characterize 
the physical world have uncertainties, sometimes the value of those uncertainties is not 
given. If the value of an uncertainty is given, such as as in 3±1 , we say that the 
uncertainty is explicit. 

Questions	  
 

3. You are fitting data to some model. The data includes explicit uncertainties only 
in the dependent variable. The χ 2 divided by the number of degrees of freedom is 
0.05. If the model is appropriate for the data, and the experimental values of the 
independent and dependent variables are correct, what is probably wrong? 

4. You are fitting data to some model. The data includes explicit uncertainties only 
in the dependent variable. The χ 2 divided by the number of degrees of freedom is 
14. If the data, including the uncertainties, are correct, what is probably wrong? 

   
Although almost all real experimental data have uncertainties in at least the 
dependent variable, many standard least-squares fitters, including the ones 
supplied by Excel, are not capable of dealing with those uncertainties.  This 
means that for analysis of experimental data they are often not good enough.  
On the Practical computers, the Polynomial Fit program in the LabVIEW 

Shortcuts folder does allow for data with uncertainties in one or both of the variables in 
the dataset. 
 
Often real experimental data, such as in Table 1, has uncertainties in the independent 
variable. The standard way of dealing with this case is called the effective variance 
method.  Say we are fitting the data to y = f (x) and have a datapoint with a value of the 
independent variable x and an uncertainty u(x). Then we can form an effective 
uncertainty in the value of the dependent variable, ueff, due to the uncertainty in x as 
shown in Figure 6. 
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Figure 6 
 
Then the total uncertainty in the y coordinate is the uncertainty in y, u(y), combined with 
the effective uncertainty due to u(x) in quadrature. 
 

 utotal (y) = u(y)2 + ueff
2                                           (10) 

 
Then utotal is used in the fit the same way that u(y) is used for data with explicit 
uncertainties only in the dependent variable. 

An	  Example	  
 
A thermocouple is a device that emits a voltage that depends on its temperature. 
Thermocouples are often used as thermometers. Figure 7 shows some student-collected 
data on calibrating a thermocouple that was presented by Bevington.3 The student 
assigned an uncertainty to the voltage, but not to the temperature.  Also shown in the 
figure is the result of fitting the data to a straight line.  The results of the fit were: 
 

slope: 0.041 2 ± 0.000 4  
intercept: −0.98 ± 0.02  
chi-squared: 21.05 
degrees of freedom: 19 
 

 
 
 
 
 
 

                                                
3 Philip R. Bevington, Data Reduction and Analysis (McGraw-Hill, 1969), pg. 138. 
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Figure 7 
 

Questions	  
 

5. Just from the numerical results of the fit and from Figure 7, is this a good fit to a 
reasonable model? 

6. Figure 8 shows a plot of the residuals.  Now what do you think of the fit? 
  
  
  
  
  
  
  
  
  
            
                                                    Figure 8 
 

7. We add a quadratic term to the fit, so we are fitting to: V = mt + b + ct 2 . The 
numerical results of the fit are: 
 
     slope: m = 0.035 ± 0.001       
     intercept: b = −0.89 ± 0.03  
     quadratic term: c = 0.000 06 ± 0.000 01  
     chi-squared: 1.007 
     degrees of freedom: 18 
 
The graphical result of the fit including a plot of the residuals as an insert is 
shown in Figure 9. Is this a good fit?  Are there any problems with it? If so, what 
are they and how can they be explained? 
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Figure 9 

 
 

We began this Module using a theory, Newton’s 2nd Law, as a model for the force-
acceleration data. For the thermocouple calibration, we have not used any theory: we 
have let the data “talk to us” to determine an appropriate model for the relation between 
temperature and voltage. 

Summary	  of	  Names,	  Symbols,	  and	  Formulae	  
 
independent variable: the quantity that is varied in an experiment 
 
dependent variable: the quantity whose value changes because of changes in the 
independent variable 
 
model: some formula or relation that represents a physical system 
 
residual r: the fitted value of the dependent variable minus the experimental value of the 
dependent variable 
 
least squares: a fitting technique that minimizes the sum of the squares of the residuals 
 
degrees of freedom: the number of datapoints minus the number of parameters to which 
the data are being fit 
 
chi-squared χ 2 : the sum of the squares of the residuals each divided by the uncertainty 
 
effective variance method: a technique to account for uncertainties in the dependent 
variable of a dataset 
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explicit uncertainty: the value of the uncertainty in some quantity is explicitly given. 
 
 
This Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto, September 2013. 
Revised by David M. Harrison, June 18, 2014. 
Revised by Jason Harlow and David M. Harrison, March 20, 2015. 
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Figure 10 

 


