Uncertainty in Physical Measurements:
Module 5 — Data with Two Variables

Often data have two variables, such as the magnitude of the force F' exerted on an object
and the object’s acceleration a. In this Module we will examine some ways to determine
how one of the variables, such as the acceleration, depends on the other variable, such as
the force.

Say we have collected data for the acceleration a of a cart of mass M for force F' with the
apparatus of Figure 1. We assume that the mass of the string and the pulley are
negligible, and the pulley is frictionless. Then the force F exerted on the cart is equal to
mg, where g is the acceleration due to gravity. We collect data for a number of different
masses .

M F=mg
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Figure 1

We want to determine how the acceleration depends on the force. The acceleration is
some function of the force:

a= f(F) (1)

In this case the variable F'is called the independent variable, it is the quantity that is
being experimentally changed by changing the mass m. Then the variable a is called the
dependent variable, and its value depends on the value of the independent variable.

Table 1 shows the data for the experiment. The uncertainties were found using the
techniques we learned about in Modules 2 and 3.

F(N) a(ms™)
0.25+0.03 0.6+0.1
0.74+0.03 1.4+0.1
1.23+0.03 2.410.2
1.72+£0.03 3.4+£0.3

Table 1



Graphing the Data

There is probably no better way to explore
data than with a graph. Figure 2 shows a
graph of the first data point in the table:
(F,a,)=(0.251£0.03,0.5£0.1).

The dot is at the values of the force and
acceleration, and the length of the bars
through the dot indicate the values of the
uncertainties

Sometimes the uncertainty in one of the
two variables is zero or negligible. As an
example, consider the temperature
measurements we thought about in Module
2. We wish to calibrate the digital
thermometer that reads temperatures to the
tenth of a degree with the better
thermometer that reads temperatures to the
hundredths of a degree. So for a number of
different temperatures we measure using
both instruments. There is an uncertainty in
our measurements of the temperature with
the better instrument, but there is no
uncertainty in the reading of the less good
instrument: it reads, say, exactly 12.8 when
we measure the temperature with the better
instrument to be 12.820+0.006 °C.

Then the plot of the datapoint:
(reading, t) = (12.8, 12.820+0.006)
is shown in Figure 3.
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If there is only a significant uncertainty in one of the variables, as in Figure
3, that uncertainty must be in the dependent variable, i.e. the one that is

graphed on the vertical axis.
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Figure 10 at the end of this Guide is a graph of all the data in Table 1.

Activity 1
If we assume Newton’s 2™ Law is correct for the data, then for a frictionless cart:

1
a:MF (2)

Eqn. 2 is called a model of the physical system of Figure 1. From the equation, the slope
of a straight line through the data points is equal to 1/M.

Draw the best straight line that you can through all the data points. You have a “free”
data point at the origin, since the acceleration is exactly zero when there is no applied
force. Considering that the uncertainties in the values of the data are saying that the
experimenter believes that the actual value is probably within the range given by the
uncertainties, does the line have to go through all of the rectangles defined by the
uncertainties or only most of them? Explain.

If the uncertainties in the data are based on a triangular probability distribution, what is a
reasonable numerical value for the word “most”? What about for a Gaussian probability
distribution function?

Find the slope m of the line. What are the units of the slope?
Calculate M. What are its units?

In finding the “best” straight line, you may have noticed that you can wiggle the ruler
around a bit and still account pretty well for the data within the experimental
uncertainties. Determine how much you can wiggle the ruler and still account for the
data. Does the line with the maximum or the minimum slope have to go through all the
bars representing the uncertainty, or only most of them? Explain.

The amount of wiggle you can do with the ruler and still account for the data determines
the uncertainty in the value of slope. Determine what that uncertainty is.

Finally, present your experimental determination of M including its uncertainty. Recall

from Module 4 that if a quantity is raised to a power, z = x", then the uncertainty in z is

1

given by u(z) :|nx(”_”u(x)| .Here M=m™",ie.n=-1.

You will want to staple Figure 10 with the lines you have drawn on it into your notebook.
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Question 1

Measuring the temperature ¢ and pressure p of a fixed volume of gas and extrapolating the
data to when the pressure is zero can find the value of the absolute zero. Figures 4a and
4b show some student-collected data of such an experiment as reported by Taylor.'
Which plot should be used to determine the value of absolute zero? Why? Note that you
are not being asked to do the determination, although of course you may do so if you
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' J.R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley
CA, 1982), 160.
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You may be used to writing Newton’s 2™ Law as:
F=Ma 3)

Although algebraically this is identical to the form we used in Eqn. 2, in
terms of communicating the relationship between forces and
acceleration it is misleading. Eqn. 3 implies that the independent
variable is @ which causes forces F. This is clearly not correct. Eqn. 2,
then, best expresses the relation between force and acceleration: forces
cause accelerations.

Least-Squares Fitting

In Activity 1 you fit the data of Table 1 to a model by hand. The model was given by
Eqn. 2, and you used the graph of the data to perform the fit and determine the value and
uncertainty in the parameter 1/M.

Often we use computers to do such fits numerically. The most common type of fitting is
to a polynomial model:

y=a,+ax+a,x’ +...

S )

For example, if the model is a straight line, y = mx + b, then qy is the intercept b, a; is the
slope m, and all other of the parameters a; are zero. If the model is a parabola,

y = ¢ x°, then the only non-zero parameter is a, which is ¢ in the model. In general, the fit
determines the values of the parameters ay that are non-zero.

Say we are fitting to an arbitrary model:
y=f(x) (5)

We have a series of values of the data: (x,,y,),(x,,y,), ...,(xy,yy). For each datapoint,
the fitted value of the dependent variable, yi s, 1s given by:

Vigie = f(x) (6)

However, the experimental value of y; is unlikely to be exactly equal to y; s.. We define
the residual r; to be:
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K=Y = Yisic

(7)
=y, —f(x)
Just as for the deviations we learned about in Module 1, for a perfect fit the sum of the
residuals for all the data is zero. However, again similar to the deviations in Module 1,
the sum of the squares of the residuals is not zero. It is a measure of how much the
model differs from the data.

The most common technique for computer fitting of data to a model is called least-
squares. The name is because it finds the values of the fitted parameters for which the
sum of the squares of the residuals is a minimum.

There is a famous quartet of (x, y) pairs devised by Anscombe.” Here is a listing of a
Python program that loads the usual libraries, defines the four datasets, and does some

analysis of the first dataset:

http://www.upscale.utoronto.ca/PVB/Harrison/GUM/05 DataWithTwoVariables/Anscombe.py

Depending on your computing environment, you may be able to click on the above link
to display the code in your browser. If not, you can copy the above link, open a new
tab/window in your browser, and paste the link location into your browser.

Once you have the code displayed in your browser, start VIDLE for VPython and copy
and paste the code into the Python input window. The input window should look like
this:

Anscombe. py - F:/GUM/05_DataWithTwoVariables/Python/Anscombe. py
File Edit Format Run Options Windows Help

from pylab import * _]
from scipy import *

# Anscombe's first dataset
Alx = [10, &, 13, 9, 11, 14, 6, 4, 12, 7, 5]
Aly = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84,4.82, 5.68]

# The second
Azx = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
A2y = [9.14, 5.14, 5.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

# The third
a3x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
a3y = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.03, 5.39, 5.15, 6.42, 5.73]
# The fourth

a4x = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]

14y = [6.58, 5.76, 7.71, S.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]

print
print

", meanililx)

print "Variance of x:", wvar(ilx, ddof = 1)

print "Mean of y:", mean(ily)

print "Variance of y:", wvar(ily, ddof = 1)

print "Straight line fit:", polyfit{klx, Aly, 1, full = True)

2 F.J. Anscombe, American Statistician 27 (Feb. 1973), pg. 17.
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Note that the first of the four datasets consists of the values of x in A1x, and the values of

yin Aly. The other three datasets are
variable name.

similarly named except for the number in the

The program computes the means and variances of the x and y variables. The last line fits
the data to a straight line. Run the program. The output window will look like Figure 5
except for the red boxes and labels, which have been added.

Python Shell
File Edit Shell Debug Options Windows Help

CEX

Python 2.7.1 (r271:86832,
on win32
Type "copyright®,

Nov 27 2010, 18:30:46)

"ecredits" or "license ()" for more information.

=

[MSC v.1500 32 bit (Intel)]

>>>
>>>
First dataset:

Hean of x: 9.0

Variance of x: 11.0

Mean of y: 7.50090909091
Variance of y: 4.12726909091

slope

RESTART

sum of the squares of

intercept the residuals

Straight line fit:

{array([ [0.50009091}

[F.000059091] ), array([ [13.76269]), 2,

array([ 3.96412484,
> |

0.62678317]),

2.4424906541753444e-15)

Figure 5

There is a lot of information in the results of the fit, but we will concentrate on the slope,
intercept, and sum of the squares of the residuals.
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Activity 2

Copy and paste the program lines that computes the means, variances, and does the fit
and change the copied lines so that the program does the calculation on the 2™, 3", and
4™ datasets.

If you just look at the values for the four datasets, i.e. means, variances, and the slopes,
intercepts, and the sum of the squares of the residuals of the fit, what might you conclude
about whether or not the four datasets are almost identical?

Plot the first dataset with:

plot (Alx, Aly, ‘bo’)
show ()

Look at the plot, and then plot the other three datasets. Now what do you think about the
similarity of the four datasets? Is a straight line model appropriate for each of the
datasets?

What can you conclude about the relative importance of the numbers that characterize the
data compared to a graphical exploration of the data?

Imagine we are fitting some data to a straight line: y = mx + b. If there is only one
datapoint, then no such fit is possible: any line going through the datapoint is equivalent
to any other line going through the datapoint. If there are exactly two datapoints, then
there is no doubt about the values of the slope and intercept: they are the slope and
intercept of the line connecting the two points. However, if there are three or more
datapoints, then we can imagine a range of slopes and intercepts of lines that more-or-less
are consistent with the data.

The degrees of freedom of a fit are the number of datapoints minus the number of
parameters to which we are fitting, which is two for a straight line. Fits with negative
degrees of freedom are impossible. Fits with zero degrees of freedom are exact.

Question

2. Say you are fitting the data of Table 1 to a straight line with an added parabolic
term:

a=mF+b+cF*

What are the degrees of freedom of the fit?
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Evaluating the Quality of a Fit

In Activity 2 we learned the graphs are an important tool in evaluating fits. Now we will
learn about some quantitative ways of evaluating a fit.

The sum of the squares of the residuals of a fit, ss, is:

N 2

ss= Y[y, — f(x)] (8)

where we have fit the data to the model y = f(x) and there are N datapoints. It measures
the “goodness” of the fit, with smaller values meaning a better fit. But there is no
objective way to determine if the value of ss is “small” or “large.”

However, if the data have uncertainties in the dependent variable, u(y,), then we can
weight each residual by 1 over that uncertainty, and form the sum of the squares of the
weighted residuals. This sum is called the chi-squared, y”. (x is the Greek letter “chi”
which rhymes with the word “eye.”)

¥ 2{ f(“} ©)

i=1 u(y,)

Now a “least-squares” fit finds the minimum in the >, which may be for different

values of the fitted parameters than the values found by minimising the sum of the
squares of the residuals.

If the data are correct and the model is reasonable, the x> should be roughly equal to the
number of degrees of freedom. Ifthe y* is much larger than the number of degrees of

freedom, the fit is poor. If the y”is much less than the number of degrees of freedom, the
fit is too good to be true.

Although you have learned in these Modules that almost all numbers used to characterize
the physical world have uncertainties, sometimes the value of those uncertainties is not
given. If the value of an uncertainty is given, such as in x =31, we say that the
uncertainty is explicit.
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Questions

3. You are fitting data to some model. The data includes explicit uncertainties only
in the dependent variable. The y’divided by the number of degrees of freedom is

0.05. If the model is appropriate for the data, and the experimental values of the
independent and dependent variables are correct, what is probably wrong?
4. You are fitting data to some model. The data includes explicit uncertainties only

in the dependent variable. The y’divided by the number of degrees of freedom is
14. If the data, including the uncertainties, are correct, what is probably wrong?

Although almost all real experimental data have uncertainties in at least the
dependent variable, many standard least-squares fitters are not capable of
dealing with those uncertainties. This means that for analysis of
experimental data they are often not good enough. On the Practical
computers, the Polynomial Fit program in the LabVIEW Shortcuts folder
does allow for data with uncertainties in one or both of the variables in the dataset.

Often real experimental data, such as in Table 1, has uncertainties in the independent
variable. The standard way of dealing with this case is called the effective variance
method. Say we are fitting the data to y = ' (x) and have a datapoint with a value of the
independent variable x and an uncertainty u(x). Then we can form an effective
uncertainty in the value of the dependent variable, u.¢r, due to the uncertainty in x as
shown in Figure 6.

f(x)+ Ueff—
f(x)
f(X) - ueff —

v

X - u(x) )I( x-IF u(x)

Figure 6

Then the total uncertainty in the y coordinate is the uncertainty in y, u(y), combined with
the effective uncertainty due to u(x) in quadrature.

utotal(y): Vu()’)z +ueff2 (10)
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Then uoa 15 used in the fit the same way that u(y) is used for data with explicit
uncertainties only in the dependent variable.

An Example

A thermocouple is a device that emits a voltage that depends on its temperature.
Thermocouples are often used as thermometers. Figure 7 shows some student-collected
data on calibrating a thermocouple that was presented by Bevington.” The student
assigned an uncertainty to the voltage, but not to the temperature. Also shown in the
figure is the result of fitting the data to a straight line. The results of the fit were:

slope: 0.0412+0.000 4

intercept: —0.98+0.02
chi-squared: 21.05
degrees of freedom: 19

Thermocouple Calibration
V (Volts)

t(°C)

Figure 7

3 Philip R. Bevington, Data Reduction and Analysis (McGraw-Hill, 1969), pg. 138.
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Questions

5. Just from the numerical results of the fit and from Figure 7, is this a good fit to a
reasonable model?
6. Figure 8 shows a plot of the residuals. Now what do you think of the fit?

Residuals (Volts)
0.15-

::’HJf‘ ]
4 T

-0.10+

Figure 8

7. We add a quadratic term to the fit, so we are fitting to: V =mt+b+ct’. The
numerical results of the fit are:

slope: m=0.035+0.001
intercept: b=-0.89+£0.03
quadratic term: ¢=0.00006+0.00001

chi-squared: 1.007
degrees of freedom: 18

The graphical result of the fit including a plot of the residuals as an insert is
shown in Figure 9. Is this a good fit? Are there any problems with it? If so, what
are they and how can they be explained?
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Calibrating to a
2nd order polynomial
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Figure 9

We began this Module using a theory, Newton’s 2™ Law, as a model for the force-
acceleration data. For the thermocouple calibration, we have not used any theory: we
have let the data “talk to us” to determine an appropriate model for the relation between
temperature and voltage.

Summary of Names, Symbols, and Formulae

independent variable: the quantity that is varied in an experiment

dependent variable: the quantity whose value changes because of changes in the
independent variable

model: some formula or relation that represents a physical system

residual 7: the fitted value of the dependent variable minus the experimental value of the
dependent variable

least squares: a fitting technique that minimizes the sum of the squares of the residuals

degrees of freedom: the number of datapoints minus the number of parameters to which
the data are being fit

chi-squared y’: the sum of the squares of the residuals each divided by the uncertainty

effective variance method: a technique to account for uncertainties in the dependent
variable of a dataset

Uncertainty in Physical Measurements Module 5 — Data with Two Variables



14

explicit uncertainty: the value of the uncertainty in some quantity is explicitly given

This Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto, September 2013.
Revised by David M. Harrison, October 24, 2013; June 18, 2014.
Revised by David M. Harrison and Jason Harlow, March 17, 2015.
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Force — acceleration data
a(m 3_2)
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Figure 10
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