
Uncertainty	  in	  Physical	  Measurements:	  
Module	  4	  –	  Repeated	  Measurements	  
In Modules 2 and 3 we considered a single measurement of some physical quantity. In 
each of the examples we discussed, repeating the measurement of the same object using 
the same instrument almost certainly would give the same result. So repeating these 
measurements doesn’t give us any added information about the value and uncertainty of 
the quantity being measured. In this Module we will think about cases where repeated 
measurements do not give the same value of the measurand, and you will measure the 
time for a piece of paper to fall to the floor. 
 
We will begin by thinking about the following experimental apparatus. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
A curved ramp is mounted on a table. You release a small ball from rest at the top of the 
ramp, it rolls down the ramp, and then travels along the dashed path. There is a special 
paper on the floor where the ball lands and when the ball strikes the paper it will leave a 
mark on it where it landed. We measure the horizontal distance d the ball travels when it 
hits the floor. It is hard for you to release the ball from exactly the same position each 
time, and the ramp and ball are not completely smooth so the ball bounces around a bit as 
it goes down the ramp. Therefore, if you repeat the measurement a few times, it is 
unlikely that the ball landed in exactly the same place each time.  Perhaps after 5 trials 
the paper looks like Figure 2. We call such measurements scattered or dispersed. 
 
 
 
 

 
Figure 2 
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It the absence of air resistance and for a very small ball, Newton’s Laws can be used to 
show that the theoretical value of d, dtheory is: 
   

 dtheory = 2 ab                                                               (1) 
 
The question, then, is does the data taken from Figure 2 match this theoretical prediction 
within the experimental uncertainty? Since more-or-less random factors have made the 
measurements of d dispersed, repeating the measurement will hopefully mean that the 
mean value of all the trials will give us a better estimate of the true value of the distance. 
We will return to this experiment later in this Module. 
 
There are many other circumstances where more-or-less random factors cause the results 
of repeated measurements to not give the exact same result.  You saw an example of this 
in Module 1 – Backgammon 1, when the results of rolling dice 36 times were different for 
different Teams. Similarly, the height of a person is related to factors like the nutrition of 
the person when a child, genetics, and other factors. In 1885 Francis Galton measured the 
heights of 928 adults in London, England.  Figure 3 shows the results of his 
measurements. You can see that the shape is roughly a bell-shaped curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 
Galton also invented an apparatus called a quincunx or Galton board shown in Figure 4. 
In Part (a), a hopper filled with balls drops them one at a time onto a peg. There is a 50% 
chance the ball will bounce to the left and a 50% chance the ball will bounce to the right. 
There are two pegs under this peg, positioned so that for each there is a 50% chance that 
the ball that strikes it will bounce to the left and a 50% chance that it will bounce to the 
right. This continues until at the bottom, when the balls are collected into the bins. A 
possible result of running the apparatus is that the balls are distributed as shown in Part 
(b). This too is approximately a bell-shaped curve. 
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(a) (b) 

Figure 4 
 

Here is a link to a YouTube video of a real quincunx: 
 

https://www.youtube.com/watch?v=3m4bxse2JEQ 
 
A final example of an approximately bell-shaped distribution is student marks on a test.  
Your mark on a test depends on your ability, how hard you have been studying, how you 
are feeling on the day you wrote the test, the degree that the questions on the test asked 
about things that you studied, and probably other factors. Figure 5 shows a histogram of 
marks for a 200-student Physics class on a recent Final Exam. It too is approximately 
bell-shaped. We will comment soon on the smooth curve that is also shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
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Bell-shaped curves are often called Gaussian distributions because Carl Friedrich Gauss 
studied them extensively in the early 19th century. They occur so often that sometimes 
they are called normal distributions. We can write a formula for the amplitude n(x) of a 
bell-shaped curve for a variable x as: 

 n(x) = nmaxe
− (x−µ )

2

2σ 2                                                   (2) 
 
where nmax is the maximum value of n, µ  is the value x for which n(x) = nmax and σ  is 
the standard deviation. As you will soon see, this is the same standard deviation you 
learned about in Modules 2 and 3. 
 
The solid curve in Figure 5 shows the result of fitting the mark data to a Gaussian.  The 
values of the fitted parameters are: 
 

nmax = 31.2 ± 0.6
µ = 66.2 ± 0.3
σ = 12.8 ± 0.3

                                                      (3) 

 
Now we will return to the experiment shown in Figure 1 with the data of Figure 2. We 
measure the horizontal position xi for each of the i trials with a ruler.  For now we will 
ignore the uncertainty in the measurement by the ruler: instead we will concentrate on the 
spread of values that we see in Figure 2. 
 
It is probably reasonable to model the data with a Gaussian probability distribution 
function. But there are at least two issues in forming this model. 
 
Issue 1: As always, the total area under the pdf must equal to 1.  But the area A under a 
Gaussian can be shown from integral calculus to be: 
 

 A = 2π × nmax ×σ                                                   (4) 
 
Therefore for a probability distribution function nmax must be related to σ  by: 
 

  nmax =
1
2π σ

                                                        (5) 

 
Figure 6 shows two Gaussian pdfs, both with total areas equal to 1. Both have values of 
µ = 50 . The solid curve has σ = 10  and the dashed curve has σ = 20 .  We see that σ  is 
a measure of the width of the distribution. 
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Figure 6 
 
Although we didn’t say so at the time, the standard deviation is also a measure of the 
width for the uniform and triangular probability distribution functions of Modules 2 and 
3. For both of these the half-width of the distribution is a and for the rectangular pdf  
a = 3σ  while for the triangular pdf a = 6σ . For Gaussians the half-width is not a 
measure of the width of the distribution, since it is always infinite. 
 
Soon we will want to know that for each Gaussian in Figure 6, from integral calculus it 
can be shown that the area under the curve between µ −σ  and µ +σ is 0.68. 

Question	  
 

1. Imagine that the data of the experiment in Figures 1 and 2 gives distances d 
between 0.62 and .73 m. True Gaussians, Eqn. 2, only approach zero 
asymptotically as x→ ±∞ .  So if we use a Gaussian probability distribution 
function to describe the data of experiment of Figure 1, this says that there is a 
small but non-zero probability of getting a result of d = -432 km.  Is this 
physically possible? What does this tell you about using a Gaussian pdf? 

 
Issue 2: The second issue is more difficult. Although we may believe that the distribution 
of the values of x corresponds at least approximately to a Gaussian, unless we repeat the 
measurements an infinite number of times we can not know what that Gaussian is!  With 
only a finite number of measurements, it is possible that the random factors that lead to a 
Gaussian distribution happened to work out so that most of the measured values of x were 
too high or too low, or perhaps they were spread out more widely or more narrowly than 
the actual distribution, or perhaps both. 
 
To find the true mean of the data requires an infinite number of measurements: 



 

Uncertainty in Physical Measurements                   Module 4 – Repeated Measurements 

6 

 

 x = l im
N→∞

xi
i=1

N

∑ / N⎛
⎝⎜

⎞
⎠⎟
= µ                                                (6) 

 
For a finite number of measurements we can only estimate the mean: 

 xest =
xi

i=1

N

∑
N

, N ≠ ∞                                                   (7) 

 
Since we can only estimate the mean, we can only estimate the variance and the standard 
deviation: 
 

 
varest =

(xi − xest )
2

i=1

N

∑
N −1

σ est = varest =
(xi − xest )

2

i=1

N

∑
N −1

                                        (8) 

 
Note that these equations are essentially identical to the equations for variance and 
standard deviation that we have seen in previous Modules except that they use the 
estimated mean since we cannot know the true value of the mean. Although the variance 
and standard deviation are just estimates, their interpretation is the same.  For any 
individual measurement xi, the estimated uncertainty in the value of the measurand is: 
 

 u(xi ) =σ est                                                           (9) 
 
Note that this is not the uncertainty in the value of the estimated mean xest : it is the 
uncertainty in each individual measurand xi.  Above we stated that for a Gaussian pdf, the 
area under the curve between µ −σ  and µ +σ is 0.68. Therefore it is reasonable to 
assume that the probability that for a single measurement xi the true value of x  is within 
σ est  of xi is 0.68.  Put another way, in the experiment of Figures 1 and 2 if modeling the 
pdf as a Gaussian is reasonable, then if you choose one of the measurements of the 
distance xi at random, there is a 68% chance that it is within one standard deviation of the 
true value of the position. 
 
Since this uncertainty arises from the scatter of values due to various random effects, this 
type of uncertainty is often called statistical. 
 
It can be shown that if a measurement is repeated N times, the estimated uncertainty in 
the standard deviation, u(σ est ) , is given by: 
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 u(σ est )
σ est

= 1
2(N −1)

                                                 (10) 

 
The quantity u(σ est ) /σ est  is called the fractional uncertainty in the estimated standard 
deviation. Multiplying this by 100 gives the percentage uncertainty. 

Activity	  1	  
 
Imagine that you have measured the time for a pendulum to undergo five oscillations, t5, 
with a digital stopwatch.  You repeat the measurements 4 times, and the data are: 
 

t5 (s) 
7.53 
7.38 
7.47 
7.43 

 
You correctly calculate the estimated standard deviation of the measurements σ est , and 
the display on your calculator reads 0.0634429.  From Eqn. 10, calculate the value of 
u(σ est ) . Express your answer to the same number of significant figures as the given value 
of σ est . 
 
We express this result by writing σ est ± u(σ est ) , which is a compact way of saying that 
you think that the actual value of the standard deviation is probably between 
σ est − u(σ est )  and σ est + u(σ est ) . 
 

1. Write down σ est − u(σ est )  and σ est + u(σ est )  to one significant figure. 
2. Write down σ est − u(σ est )  and σ est + u(σ est )  to two significant figures. 
3. Write down σ est − u(σ est )  and σ est + u(σ est )  to three significant figures. 

 
Considering the facts that the ranges of values you specified in all three cases are only 
expressions of the range where you think the actual value probably lies, and that the 
value of the standard deviation itself is only an estimate, do you think there is any 
meaningful information to communicate to others by giving the range of values to two or 
three significant figures instead of just to one significant figure? 
 
What can you conclude about the number of digits in the value of the estimated standard 
deviation that are actually significant? Is there any real meaning to the number 3 in the 
thousandths place, or the number 4 in the ten-thousandths place? 
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You may have seen other definitions and ways of dealing with significant 
figures elsewhere.  For experimentally determined quantities, such as σ est  in 
Activity 1, those definitions and properties are not appropriate!  The number 
of significant figures in an experimentally determined value is defined by its 
uncertainty, u(σ est ) in this case. 

Propagation	  of	  Uncertainties	  
 
Say we have measured some quantity x with uncertainty u(x) and a quantity y with 
uncertainty u(y) and wish to combine them to get a value z with uncertainty u(z). As we 
discussed in Module 2, we need the combination to preserve the probabilities associated 
with the uncertainties in x and y. We will consider a number of ways of combining the 
quantities. Although this Module has been discussing statistical uncertainties, this section 
applies to all uncertainties, including the ones you learned about in Modules 2 and 3. 

Addition	  or	  Subtraction	  
 
As discussed in Modules 2 and 3, if z = x + y or z = x – y then the uncertainties are 
combined in quadrature: 
 

 u(z) = u(x)2 + u(y)2                                                   (11) 

Multiplication	  or	  Division	  
 
If z = x × y  or z = x ÷ y  then the fractional uncertainties are combined in quadrature: 
 

 u(z)
z

= u(x)
x

⎛
⎝⎜

⎞
⎠⎟
2

+ u(y)
y

⎛
⎝⎜

⎞
⎠⎟

2

                                           (12) 

Multiplication	  by	  a	  Constant	  
 
If z = a × x , where a is a constant known to a large number of significant figures, then the 
uncertainty in z is given by Eqn. 12 with the uncertainty in a, u(a) = 0. So: 
 

 u(z) = au(x)                                                       (13) 

Raising	  to	  a	  Power	  
 
If z = xn  then: 
 

 u(z) = nx(n−1)u(x)                                                   (14) 
 
which can also be written in terms of the fractional uncertainties: 
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u(z)
z

= n
u x( )
x

                                                        (15) 

 
Say you are squaring x, so z = x2 = x × x . You may be tempted to use Eqn 
12 for multiplication and division, but this is incorrect: Eqn 12 assumes that 
the uncertainties in the quantities x and y are independent of each other. 
Here there is only one quantity, x. 

 
Be sure to remember that in call cases u(z) defines the significant figures in u. 

The	  General	  Case	  
 
In general z is some function of x and y, z = f(x, y). The uncertainty in z requires knowing 
about partial derivatives. If you don’t know about these yet, you may skip this sub-
section and go to the questions. Nonetheless: 
 

u(z) = ∂ f (x, y)
∂x

u(x)⎛
⎝⎜

⎞
⎠⎟
2

+ ∂ f (x, y)
∂y

u(y)⎛
⎝⎜

⎞
⎠⎟

2

                             (16) 

 
Eqns. 11 – 15 are just applications of Eqn. 16 for various functions. 

Questions	  
 

2. Eqn. 14 may look familiar to you.  What does it look like?  Hint: try writing u(z) 
as dz and u(x) as dx.  

3. You measure a quantity to be 3±1  and another quantity to be 70 ± 2 . What is the 
uncertainty in the sum to one significant figure?  Does the uncertainty in the value 
of 3 have any effect on the uncertainty in the sum to one significant figure? Write 
down the sum ±  its uncertainty to the correct number of significant figures. 
Remember from Activity 1 that the uncertainty only has one or at the very most 
two digits that really are significant, and that the uncertainty determines the 
number of digits in the value that are significant. 

 
In 1998 Andrew Wakefield and collaborators published a fraudulent study in the medical 
journal The Lancet that claimed to show a link between autism spectrum disorder (ASD) 
and the combined measles, mumps, and rubella (MMR) vaccine. Since then many studies 
have been done claiming to show that there is no link between ASD and MMR. In 2015 
Anjali Jain et al. published a new study in The Journal of the American Medical 
Association that involved a large sample of children in the U.S.  You can see Jain’s paper 
at: http://jama.jamanetwork.com/article.aspx?articleid=2275444. 
 
Here is a fragment of their data, that of four-year olds without an older sibling with ASD.  
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MMR Vaccination Status Number of ASD Cases Sample Size 

1 dose 395 79 691 
Unvaccinated 65 11 957 

 
Here are the data for four-year olds with and without an older sibling with ASD, 
regardless of whether or not they had received the MMR vaccine. 
 

Older Sibling with ASD Number of ASD Cases Sample Size 
No 460 91 648 
Yes 89 1 878 

 
As you will learn in Module 6, for numbers that are the result of counting, such as the 
395 four-year olds without an older sibling with ASD, who had been vaccinated, and who 
had been diagnosed with ASD, a good first guess of the standard uncertainty in the 
number is the square root of that number. 

Questions	  
 

4. For four-year olds without an older sibling with ASD, does the Jain study indicate 
a correlation between MMR vaccination and ASD? For simplicity, assume that 
the uncertainties in the sample sizes are negligible. A good way to find the answer 
to this question is to: 

a. Calculate the rate of four-year olds with ASD who had been vaccinated, 
including its uncertainty. The rate is the number of cases divided by the 
sample size. Your results will be easier to read if you express the value in 
scientific form, i.e as m ×10n  where n is an integer and 1≤ m <10 . Then 
express the uncertainty using the same notation but with the same value of 
n. For example: 123.4 ± 9.8 = (1.234 ± 0.098)×102 .  

b. Calculate the rate of four-year olds with ASD who had not been 
vaccinated, including its uncertainty. 

c. Calculate the difference in these two rates, including the total uncertainty. 
5. For four-year olds, does the study indicate a correlation with whether or not they 

have an older sibling with ASD? For simplicity, assume that the uncertainties in 
the sample sizes are negligible. 

The	  Uncertainty	  in	  the	  Mean	  
 
We have seen that for N repeated measurements, x1, x2, … , xN, the statistical uncertainty 
in each individual measurand xi is the estimated standard deviation σ est . We now know 
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enough to determine the uncertainty in the estimated mean, u(xest ) . The estimated mean 
is given by: 

 xest =
xi

i=1

N

∑
N

=
x1 ± u(x1)[ ]+ x2 ± u(x2 )[ ]+ . . .+ xN ± u(xN )[ ]

N

                      (17) 

 
But the uncertainty in each individual measurement is the same, which we will call u(x): 
u(x) ≡ u(x1) = u(x2 ) = . . . = u(xN ) . Combining all the uncertainties in the numerator in 
quadrature gives: 

 xest =
x1 + x2 + . . . xN( ) ± Nu(x)

N
                                        (18) 

 
The numerator is divided by the constant N, so from Eqn. 13: 
 

xest =
x1 + x2 + . . . xN( )

N
± u(x)

N
                                       (19) 

 
or: 

 u(xest ) =
u(x)
N

                                                        (20) 

 
So repeating a measurement N times reduces the statistical uncertainty in the mean by a 
factor of 1/ N  times the uncertainty in each individual measurement. So repeating a 
measurement 4 times reduces the uncertainty by a factor of ½. 
 
The fact that the uncertainty in the mean is less than the uncertainty in each individual 
measurement should not be a surprise: we repeat measurements precisely so that we 
increase our knowledge of the true value of what we are measuring, i.e. in order to reduce 
its uncertainty. 
 
If we were actually doing the experiment of Figure 1, we finally could now determine if 
the measured value of the distance is within experimental uncertainties of the theoretical 
value of Eqn. 1. 
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Question	  
 

6. For the made-up data of Activity 1, you correctly calculate the mean of the four 
measurements, t5 . and your calculator reads 7.45250. Assume that the only 
significant uncertainty in each individual measurement of the time is the standard 
deviation. From Eqn. 20, what is the uncertainty in this mean value? Express your 
final result as t5 ± u(t5 ) .  Be sure to only present digits that are significant. 

 

Activity	  2	  
 
Using the supplied digital stopwatch, try to start it and then stop it at exactly 2.00 s.  
Practice a few times before beginning to take the data. After practicing, repeat a few 
times.  All members of the Team should do this, so you may end up with about 15 or 20 
values.  Just by looking at the data and without doing any calculations, choose a value of 
u such that most but not necessarily all measurements are between 
2.00 – u and 2.00 + u. 
 

Activity	  3	  
 
It is a good idea to use Python to enter your data as you take it, just as you did for rolling 
dice in Module 1. It is probably an excellent idea to review how you used Python in that 
Module now. 
 
You are supplied with a standard 8 ½ by 11 inch sheet 
of paper and a digital stopwatch. Hold the paper 
horizontally at shoulder height and release it. Measure 
the time t it takes the paper to reach the floor. Repeat for 
a total of 20 times, excluding trials where the paper 
strikes something as it falls. 
 
Make a histogram of the results of your experiment by hand. You will need to decide how 
many bins to use in making the histogram.  The decision is based somewhat on the scatter 
of values. Perhaps a good first guess is the number of datapoints divided by 2 rounded 
down to the nearest integer. You will also need to decide the values of t that separate the 
bins. In general, it is a good idea to make those values something easy for humans to 
read, such as 1.9, 2.0, 2.1, …, instead of something like 1.873, 1.973, 2.073 … 
 
Is it reasonable to assume that the scatter of values of t can be described by a Gaussian 
probability distribution function? If not, can you think of another simple function that 
better describes the shape of the histogram?  What is that shape, and why is it better? 
 



 

Uncertainty in Physical Measurements                   Module 4 – Repeated Measurements 

13 

Activity 3 continued 
 
What is the estimated statistical uncertainty in each measurement of t, i.e. the estimated 
standard deviation?  The Python function to calculate standard deviations is std(). 
However, just as for the var() function you used in Module 1 to calculate the variances, 
by default the Python standard deviation function divides the N, not N – 1. So, just as for 
the variances, you will need to calculate std( data, ddof = 1). 
 
In Activity 2 you estimated an uncertainty in the individual time measurements due to 
human reaction times, call it ureaction (ti ) . You have just found another uncertainty in the 
individual measurements, the one due do the random fluctuations in the times you 
measured for different trials; we will call this the statistical uncertainty ustatistical (ti ) .  It is 
reasonable to combine these two uncertainties in quadrature, the square root of the sum of 
the squares, to estimate the total uncertainty in each individual measurement. 
 
Do the calculation of combining these two uncertainties. Remember from Question 3 that 
if one uncertainty is much smaller than the other, than when combining them in 
quadrature to only1 or 2 significant figures the smaller value has negligible effect on the 
combination, and sometimes it is not even worth the effort of doing the calculation. Does  
the smaller of the uncertainties being combined here have a significant effect on the value 
of the combination? 
 
Can you think of any other uncertainties, such as the reading uncertainty of a digital 
instrument or the accuracy of the stopwatch, which might have a significant effect on the 
total uncertainty in your measurements of ti? If so, calculate their effects. 
 
Finally, what is estimated mean time for the paper to reach the floor, and what is the 
uncertainty in this time?  Present your final result as t ± u(t ) .  
 
 
 

Question	  
 

7. Consider the following statement: 
To properly study human reaction time, the methods and especially rough data 
analysis of Activity 2 are inadequate. But to determine the effect of reaction time 
on the measurement of the time for a piece of paper to fall to the floor in Activity 
3, the methods used in Activity 2 are good enough. 

Do you agree? Explain. 
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Activity	  4	  
 
This activity is not about the main topic of this Module, which is repeated measurements 
of the same quantity. Instead it is about uncertainties in measurements using analog 
instruments, which you learned about in Module 3, and propagation of uncertainties when 
the directly measured quantities are being divided, which you have learned about in this 
Module. 
 
You are supplied some circular metal hoops of different sizes. For each hoop determine 
its diameter and its circumference with the supplied meter stick, and include the 
uncertainties in your determination of the diameter and circumference.  A nice way to  
determine the circumference is to roll the hoop on the tabletop for exactly one revolution 
and measure how far it rolled. 
 
Then, for each hoop calculate the circumference divided by the diameter, and the 
uncertainty in the ratio.  Is the ratio the same value within the calculated uncertainties for 
all the hoops?  Is there some theoretical value of the ratio?  If so, what is it and are your 
measurements within uncertainties of this value?  Also if so, if you repeated the 
measurement for a large number of hoops of different sizes, would you expect all of the 
calculated ratios to be within uncertainties of this value, and if not what fraction of them 
should be within uncertainties of the theoretical value? 

Looking	  Back	  
 
Modules 0 – 4 are the heart of our study of uncertainties in physical measurements.  
Although there is more to be learned in Modules 5 and 6, now is a good time to pause and 
look back at some of the things that we have learned so far about this topic. 
 
A good experimentalist has brains in her/his fingertips, and has some intuitive sense of 
how precise their measurements are. For example, in the late 19th century physicist Lord 
Rayleigh (John Strutt) produced samples of nitrogen two different ways.  One method 
isolated nitrogen from the air, and the other produced nitrogen from chemical sources.  
When he measured the density of the two samples, they were not quite the same.  The 
density of the N2 from the sample from air was ρair = 1.2572 g/l i ter , while the density 
from the sample produced from chemical sources was ρchemical = 1.2505 g/l i ter.  The  
two values differ by only about 0.5%. Rayleigh was brilliant experimentalist, and his 
intuition told him that the two values were not the same within uncertainties, although he 
didn’t actually calculate those uncertainties.  He presented these results in a talk in 1894. 
Chemist William Ramsay attended the talk, and together they later showed that the 
difference in densities was because the atmospheric nitrogen contained a heavy impurity. 
They identified the impurity as the previously unknown element Argon.  They both 
received Nobel Prizes for this work, Rayleigh in physics and Ramsay in chemistry. 
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Uncertainty analysis like you have been learning about allows an experimentalist to 
quantify and communicate their intuition about the uncertainty in some experimentally 
determined quantity. 
 
We have seen that uncertainty analysis involve a number of trade-offs and guesses. These 
include that: 
 

• The choosing of a particular probability distribution function to characterize a 
measurement is almost always just an approximation or even just a wild guess. 

• Sometimes, such as assigning the half-width a to a triangular pdf for analog 
measurements, there are no fixed rules and the experimentalist must do a trade-off 
between a large value, which may be too pessimistic, and a small value, which 
may be too optimistic. 

 
Because of these trade-offs and guesses, we have seen that the uncertainty in some result 
is only known to one, or at most two, significant figures. We have also seen that the 
uncertainty is the definition of the number of significant figures in the value of the result. 
 
Finally, the standard uncertainty u is always a statement that the actual value of the 
quantity being measured is probably within ±u  of the stated value. So all uncertainties, 
whether due to reading an instrument, a manufacturer’s stated accuracy of the instrument, 
or a statistical one due to dispersed repeated measurements, are treated exactly the same 
way. 
 
The standard uncertainty u is found the same way for all types of measurements, from the 
variance and the standard deviation σ . 

 variance =
xi − x( )2

i=1

N

∑
N −1

                                               (21) 

 
 σ = variance                                                    (22) 

 
 u =σ                                                               (23) 

  
When we combine two or more measurements to get a final result, we want to preserve 
the sense that the probability given by the uncertainty in the result is the same as the 
probabilities given by the uncertainties in the directly measured quantities. Since perhaps 
one of the directly measured quantities has a value that is too large and another is too 
small, it is possible for the uncertainties to cancel each other when they are combined. 
The correct procedure is to use a variation of Pythagoras’s theorem for right triangles, i.e. 
the square root of the sum of the squares.  This procedure is called quadrature. 
 
However, the values of the probability p expressed by the standard uncertainty using 
Eqns. 21 - 23 are somewhat different for different types of measurements. For digital 
measurements pdigital = 0.58, while for analog measurements panalog = 0.65, and for 
statistical uncertainties pstatistical = 0.68. You may be thinking that if we are trying to 
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preserve the probabilities when we combine uncertainties in quadrature, surely the value 
of the probability should be the same for all types of measurements.  In principle, one 
could do this by adjusting the relation between the uncertainty and the standard deviation, 
Eqn. 23. For example, if we wish the probability to be 0.65, the value for analog 
measurements, for all types of measurements we could define: 
 

uanalog =σ  
 

 udigital =
panalog
pdigital

σ = 0.65
0.58

×σ = 1.1σ   

 

 ustatistical =
pana log
pstatistical

σ = 0.65
0.68

σ = 0.96σ   

 
 
However, to one significant figure the three values for the standard uncertainty actually 
have the same relationship to the standard deviation. We can reasonably conclude that 
this procedure is not worth the effort, and we just use Eqn. 23 for all types of 
measurements. Then when we combine uncertainties in different types of measurements 
we can ignore the insignificant differences in the values of the probabilities. 
 
Finally, there is a common tendency to just write off the difference between some 
measured quantity and the expected or accepted value as due to human error. However, 
a moment’s reflection may convince that the phrase “human error” has no meaning 
whatsoever. Every measurement has an uncertainty, and in these Modules you have been 
learning about ways to quantify what that uncertainty is.  

Question	  
 

8. For the “experiment” of Figure 1, Eqn. 1 gives the distance as dtheory = 2 ab . 
The acceleration due to gravity g does not appear in the equation. Is this 
reasonable? What about if the experiment were being done in a weightless 
environment such as the International Space Station, where g = 0?  
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Summary	  of	  Names,	  Symbols,	  and	  Formulae	  
 
Scattered or dispersed values: when repeating a measurement gives a different value of 
the measurand. 
 
Bell-shaped or Gaussian or normal distribution: a shape that can be described by: 

n(x) = nmaxe
− (x−µ )

2

2σ 2

 

Estimated mean: xest =
xi

i=1

N

∑
N

  

 

Estimated standard deviation: σ est =
(xi − xest )

2

i=1

N

∑
N −1

  

 
Significant figures: the number of digits in an experimentally determined quantity that 
have significance; found from the uncertainty in the value of that quantity. 
 
Statistical uncertainty: the uncertainty that arises because the values of the measurand 
are scattered. 
 
For a Gaussian probability distribution function: 
 

The probability that the true value is within the statistical uncertainty u(x) =σ est  
of an individual measured value xi is 0.68. 

 
Fractional uncertainty: the uncertainty in a quantity divided by the value of that 
quantity. 
 
Propagation of uncertainties: 
 

Adding or subtracting two quantities: u(z) = u(x)2 + u(y)2  
 

Multiplying or dividing two quantities: u(z)
z

= u(x)
x

⎛
⎝⎜

⎞
⎠⎟
2

+ u(y)
y

⎛
⎝⎜

⎞
⎠⎟

2

 

 
Multiplying a quantity by a constant a: u(z) = au(x)  
 
Raising a quantity to a power n: u(z) = nx(n−1)u(x)  
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For a Gaussian probability distribution function, the statistical uncertainty in the 
estimated mean is: 
 

 u(xest ) =
u(x)
N

  

 
where u(x) is the uncertainty in each individual measurement and N is the number of 
times the measurement was repeated. 
 
 
This Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto, September 2013. 
Modified by David M. Harrison, October 23, 2013; April 27, 2014. 
Modified by David M. Harrison and Brian Wilson with suggestions from the Summer 2014 PHY131 
instructors: May 31, 2014. 
Question 6 and comments following Activity 1 added by David M. Harrison, November 1, 2014. 
Jain data on autism and vaccination added.  Questions 4 and 5 added.  Subsequent questions re-numbered. 
David M. Harrison, August 20, 2015. 


