
Uncertainty	
  in	
  Physical	
  Measurements	
  
Module	
  2	
  –	
  Digital	
  Instruments	
  
 
In this Module we will consider instruments with a digital readout. You will be using a 
digital caliper to measure the diameter of a coin. 
 
 
 
 

The Figure shows a digital thermometer, which is reading 
12.8 °C.  Assume for now that the thermometer is working 
perfectly and the engineers who designed it did their job 
correctly. The value of 12.8 is called the measurand of the 
temperature. 
 
 
 
 
 
 

Questions	
  
 

1. If the actual temperature was 12.76 °C, what would the thermometer read? 
2. If the actual temperature was 12.74 °C, what would the thermometer read? 
3. If the actual temperature was 12.84 °C, what would the thermometer read? 
4. If the actual temperature was 12.86 °C, what would the thermometer read? 

 

It seems clear that for a reading of 12.8 °C it is equally likely that the actual temperature 
is between 12.75 and 12.85 °C. Therefore if we construct a probability distribution 
function (pdf) similar to what we did for dice in Module 1 – Backgammon 101 it would 
look like Figure 1. This probability distribution is called rectangular or uniform. Note 
that: 
 

• We call its height p.  
• We have shaded the area between the temporarily mysterious values of 

12.80 ! a
3

 and 12.80 + a
3

. Soon we will clear up the mystery. 
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Figure 1 
 

Questions	
  
 

5. Just as for the triangular probability distribution you learned about it Module 1 –
Backgammon 101, the total area under the probability distribution function of 
Figure 1 should be exactly equal to 1.  What is the value of p? 

6. To two significant figures what is the area under the shaded part of Figure 1? 
 
In Module 1 we stated that it was fairly easy to show that the variance of the values for 
rolling dice 36 times with a result that exactly matched the theoretical prediction is equal 
to 6.  The calculation is easy because the values that the dice can come up with are 
discrete integers. Suppose we have a very large number of objects whose temperatures 
are equally distributed between t ! a  and t + a , as described by Figure 1. Now the 
values of the temperature can be any number between the limits, and calculating the 
variance requires using integrals. Using that mathematics, it can be shown than the 
variance of the temperatures is: 
 

 var = a
2

3
                                                                  (1) 

 
The standard deviation !  is defined as the square root of the variance:  
 

 ! " var = a
3

# 0.57735a # 0.58a # 0.6a
                                         (2) 
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Note that the standard deviation is how we defined the limits of the shaded area in Figure 
1. Thus, from your answer to Question 6, there is a 58% chance that the true value of the 
temperature, whatever it may be, is between 12.80 !" and 12.80 +! . Therefore, the 
standard deviation is a good measure of the standard uncertainty u of the value of the 
temperature: there is a 58% chance that the true value of the temperature lies within one 
standard deviation of the value of the measurand, i.e. of 12.8 °C. 
 

 u(t) = !                                                            (3) 
 
For the temperature measurements the half-width a = 0.05 °C, so from Eqn. 2 the 
uncertainty is 0.05 ! 0.6 = 0.03 °C . Thus we can present the value of the temperature: 
as: 
 

t = 12.80 ± 0.03( ) °C                                             (4) 
 

There is another notation that is sometimes used to express the same thing as Equation 4: 
 

t = 12.80(3) °C                                                  (5) 
 
Eqns. 4 and 5 are both saying that the temperature is probably between 12.77 and 12.83 
°C. Therefore, the uncertainty is telling us that there is some significance in the 
hundredths of a degree in the value of the measurand. So we have added an explicit zero 
in the hundredths place to the actual reading of 12.8. The conclusion is that in an 
experimental context, it is the uncertainty that defines the number of significant figures 
in the value of the measurand. 
 

You may have seen other definitions of significant figures and rules for 
determining how many figures are actually significant in the result of a 
calculation. In the context of an experimental measurement, these other 
definitions and rules are wrong. The uncertainty defines the number of 
significant figures in the result of a measurement. 
 

 
What about the number of significant figures in the uncertainty itself? We will discuss 
this question in more detail later, but for now will just state the rule: 
 

The number of significant figures in an experimental standard uncertainty is 
1 or 2, but never greater than this. 
 

Often we will just call the standard uncertainty just the “uncertainty” in what follows. 
 
Occasionally an uncertainty is not symmetric about the value of the measurand. In these 
very rare cases one writes, for example, x = 1.23!0.03

+0.05 . 
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At this point you may be asking yourself why we are going to all this 
trouble to define the standard uncertainty u as 0.6 times the half-width of 
the probability distribution a. Why not just define the uncertainty as the 
value of a? The reason is that later we will learn about probability 
distributions which do not have a finite half-width: the Gaussian or bell-

shaped curve is a common example. So for consistency, standard uncertainties are 
defined the same way for all probability distributions: they are the standard deviation ! . 

Questions	
  
 

7. Your Instructor brings a more expensive digital thermometer 
in, and measures the same temperature we have been 
considering. The readout of the thermometer is shown to the 
right. What is the value of the measurand and the uncertainty u in this 
measurement? 

8. Assume that a system has some exact temperature, although Quantum Mechanics 
has some questions about this assumption.  What would be necessary for you to 
determine what this temperature is? It this possible? 

9. When we write the value of a temperature and its uncertainty, we are trying to 
communicate to other people a range of values within which we believe the actual 
temperature probably lies. Numerically the uncertainty u from Eqn. 2 with a = 
0.05, as read on a calculator, is 0.028 867 51. Which is these following ways of 
writing the value and uncertainty in the temperature best communicate the result 
and why? 

a. 12.8 ± 0.03( ) °C  
b. 12.80 ± 0.03( ) °C  
c. 12.800 ± 0.029( ) °C  
d. 12.8 ± 0.029( ) °C  
e. 12.80 ± 0.028 867 5 1( ) °C  
f. 12.800 000 00 ± 0.028 867 5 1( ) °C  

 
 
You may have seen the uncertainty in a measurement called the error. 
This is a terrible name, since “error” implies that some mistake has been 
made.  Here there have been no mistakes but there is still an uncertainty in 
the measurement.  So calling the uncertainty an error is an error! 
 

 
The difference in the meanings of the words “uncertainty” and “error” is why, for 
example, it is called Heisenberg’s Uncertainty Principle, not Heisenberg’s Error 
Principle. 
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Activity	
  
 
Measure the diameter of a coin with the supplied digital caliper. Determine the 
uncertainty in your measurement.  Write down the diameter of the coin as the measurand 
±  the uncertainty. We will call this uncertainty the reading uncertainty uReading. 
 
Some coins are not perfectly round, but have edges that are beveled. In this case, you will 
need to decide which parts of the edge to use in measuring the diameter. Be sure to write 
down what choice you have made in your notebook. 
 
Good manufacturers of measuring instruments give the accuracy of the instrument. The 
manufacturer controls the tolerances of the various parts of the instrument so that the true 
value is within ±  of the accuracy. Determine the accuracy of the caliper you are using: 
for many of our calipers, it is printed on the back. 
 
It is reasonable to approximate the probability distribution function associated with the 
accuracy as rectangular. Make a graph of this pdf for your measurement of the diameter 
of the coin. Determine the uncertainty associated with this pdf.  We will call this the 
accuracy uncertainty uAccuracy. 
 
You now have two different uncertainties associated with your measurand of the diameter 
of the coin. The total uncertainty in your measurement is the combination of these two 
uncertainties.  Since each individual uncertainty represents a 58% chance that the true 
value lies within ±u  of the measurand, we want the combined uncertainty to also 
represent a 58% chance.  It turns out that the way to combine the two uncertainties that 
preserves the probability is the square root of the sum of the squares of the individual 
uncertainties. So the total uncertainty in your measurement, uTotal, is: 
 

 uTotal = uReading( )2 + uAccuracy( )2                                      (5) 

 
This way of combining values is called quadrature. 
 
Finally, present your final result for the diameter of the coin.  
 

Why	
  Quadrature?	
  
 
Here we will discuss why combining uncertainties using quadrature is a reasonable 
procedure.  The discussion will not be rigorous, but is correct. 
 
The point is that the reading uncertainty and the accuracy uncertainty are independent of 
each other.  So when we combine them, they can cancel each other.  So just adding the 
two values together is too pessimistic, it doesn’t allow for this possible cancellation. 
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If we imagine some sort of abstract error space, then the 
reading and accuracy uncertainties are perpendicular axes 
in this space, as shown.  Then Pythagoras’ Theorem for 
right triangles, i.e. quadrature, gives their sum. 

Summary	
  of	
  Names,	
  Symbols,	
  and	
  Formulae	
  
 
Measurand: the experimental value of the quantity that is measured. 
 
Standard Deviation: ! = var  where var is the variance. The variance was defined in 
Module 1 
 
Standard Uncertainty u = !   
 
For a rectangular probability distribution function with half-width a: 
 

Variance var = a
2

3
  

 

Uncertainty: u = a
3
! 0.57735a ! 0.58a ! 0.6a   

 
The probability that the actual value of some quantity is within ±u  of the value of 
the measurand is 0.58. 
 

Quadrature: combining two or more quantities as the square root of the sum of the 

squares, i.e. x1( )2 + x2( )2 + . . .+ xN( )2 . 
 
Significant Figures: the number of digits in the expression of a number. The number of 
significant figures in the value of a measurand is defined by the uncertainty. 
 
 
This Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto, September 2013. 
Revised by David M. Harrison: May 23, 2014. 
   


