
This is a handout to accompany a discussion of Entanglement with the Canadian 
Association of Natural Philosophers, a group of amateurs interested in science. Here is 
the abstract of the discussion: 
 

Quantum Entanglement is a particularly amazing part of Quantum Mechanics. It 
was called "the most important result of science" by Stapp in 1975. Note that he 
says science, not just physics, and that he doesn't qualify it with any phrases like 
"since Newton" or "recent." I agree with his assessment. Gilder's book "The Age 
of Entanglement" is a spectacular discussion of how our thinking about this topic 
has developed over the last 80 years, but doesn't really attempt a discussion of 
what entanglement is. This is probably a good choice for a popular book. 
However, in our time together I hope to fill in a few of the blanks about what 
entanglement is all about. A caveat: we will not end up with a full understanding 
of entanglement. It may be the case that a full understanding is not even possible, 
at least as we usually use word ‘understand’.  
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Commons Attribution-Noncommercial-Share Alike 3.0 license. Basically you are free to 
share or modify this work for any non-commercial purpose. The details and conditions of 
the license are at: http://creativecommons.org/licenses/by-nc-sa/3.0/. 
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Some Names 
 
The origins of this story are rooted in the very beginnings of Quantum Mechanics in 
1926. A seminal paper was by Einstein, Podolsky and Rosen in 1935, so often the 
acronym EPR is associated with all this. In the early 1950’s David Bohm re-cast the EPR 
argument in a clearer form, so sometimes the acronym becomes EPRB. In 1964 John Bell 
published a theorem that made the situation even clearer, so sometimes we refer to Bell’s 
Theorem. Finally, the whole story is based on pairs of objects which somehow are 
interconnected even when they are spatially separated, and we say the objects are 
entangled. 

Bertlmann’s Socks 
 
Bertlmann, a colleague of Bell at CERN, always wore mis-
matched socks. Which colour he would have on a given 
foot on a given day was quite unpredictable. But when you 
see that the first sock is pink you can be sure that the 
second sock is not pink, even when you can’t see it. The 
figure, drawn by Bell, illustrates. There is no mystery here. 
 
An important question for a sock is: “Will it wash?” We 
imagine a consumer testing organisation which wants to 
determine if a sock will withstand washing when the water 
is at 0° C, or at 45° C, or at 90° C. We assume, reasonably, 
that the washability goes down as the temperature increases. 
 
We imagine a large collection of socks. There may be variability in the washability of 
them. We randomly divide the collection into thirds, and assume that we have a large 
enough collection that the washability of the socks is equally represented in each third. 
We wash one collection of socks at 0°, and those that survive we wash at 45°. We wash 
the second collection of socks at 45°, and those that survive we wash at 90°. We wash the 
third collection at 0° and those that survive we wash at 90°. Since the washability of each 
collection of socks is the same: 
 
 

The number that survive at 0° and not at 45° 
Plus 

The number that survive at 45° and not at 90° 
Is not less than 

The number that survive at 0° and not at 90° 
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There is no mystery here either. For each member of the third group, either it would not 
have survived at 45° and would have been in the first group, or it would have survived at 
45° and would have been in the second group. 
 
But Bertlmann’s socks come in pairs. We assume that each individual pair of socks has 
different colours but identical washability. Then if we test a large sample of pairs of his 
socks the relation at the bottom of the previous page becomes: 
 

The number of pairs in which one survives at 0° and the other not at 45° 
Plus 

The number of pairs in which one survives at 45° and other not at 90° 
Is not less than 

The number of pairs in which one survives at 0° and other not at 90° 

 

Electron Spin 
 
When a charged classical object is spinning, if we throw it 
between the poles of a weird shaped magnet it will be deflected 
either up or down. The amount of deflection depends on: 
 

 The total charge on the object and its distribution. 
 The rate and orientation of the spin 

 
 
If we take a beam of electrons from an electron gun and run it through the magnet, we see 
something strange: all electrons are deflected up by some fixed amount or deflected down 
by exactly the same amount, and which for each individual electron appears to be 
random. If the deflection is up, we say the electron is “spin up” and if it is deflected down 
we say it is “spin down.” 
 
There are substances which emit electrons in pairs. Each electron acts just like the 
electrons from the electron gun. But when we look at pairs of electrons we see that if one 
electron is “spin up” then its companion is “spin down” and vice versa. So we can call 
these Bertlmann’s electrons: if you measure one and see that it is spin up, you know that 
its companion is not spin up, it is spin down. Physicists often say that these pairs have a 
total spin of zero and that the two electrons are entangled. 
 
The fact that electrons can have only two spin states is a mystery. The fact that 
Bertlmann’s electrons have a total spin of zero is not. 
 
There is a further mystery about electrons, either from an electron gun or one of the 
Bertlmann pairs: if I rotate the magnet by, say, 45° or 90° about the axis of the initial path 
of the electrons I get the same result as before: all the electrons are deflected up by some 
fixed amount or deflected down by exactly the same amount, and which for each 
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individual electron appears to be random. Note that the definition of “up” is determined 
by the orientation of the magnet. 
 
We can extend the washability study for pairs of socks to entangled pairs of electrons 
with one trivial difference. For the socks if one survived washing at 45° we assumed that 
the other member of the pair would too. For Bertlmann’s electrons if one is spin up for 
45° its companion is spin down for 45°, i.e. its companion is not spin-up for 45°. So now 
the relation near the top of the previous page becomes: 
 
The number of pairs for which one is spin-up for 0° and the other is spin-up for 45° 

Plus 
The number of pairs for which one is spin-up for 45° and the other is spin-up for 90° 

Is not less than 
The number of pairs for which one is spin-up for 0° and the other is spin-up for 90° 

 
This relation has been experimentally tested, and is not true! So evidently there is some 
difference between Bertlmann’s socks and Bertlmann’s electrons, and we have made at 
least one wrong assumption somewhere in deriving this relation for electrons. 
 
It turns out that the actual experimental result is predicted by Quantum Mechanics, so 
whatever wrong assumptions we made are also violated by that theory. 

The Assumptions 
 
We have used some logic in deriving the relation for Bertlmann’s socks and electrons. 
We also made two assumptions in deriving the relations. Both are so self-evident that it is 
easy to miss the fact that we made them at all. 
 
First, when we talked about the number of socks or electrons at 0° and 90° we assumed 
that each would or would not pass the test at 45°. Put another way, we assumed the 
existence of washability at some temperature or spin at some angle, even if it was not 
actually measured. Put still another way, we have assumed that there is a reality 
independent of its observation. This is similar to the old philosophical saw about a tree 
falling in the forest: if no one is there was there any sound? 
 
Second, when we talk about measuring the washability or spin of one member of a pair to 
determine something about its companion, we assumed that since we were doing 
simultaneous measurements of two different socks/electrons at different locations, the 
effect of one measurement can’t possibly disturb the result of the measurement of the 
other member of the pair. Put another way, we assumed that no signal or influence can 
propagate infinitely fast. Sometimes this assumption is called locality. 
 
So experimentally we have proven that at least one of these two assumptions is wrong for 
entangled electrons. 
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So What? 
 

The experimental tests have proved that there is no reality separate from its observation 
and/or different parts of the universe are instantaneously connected to every other part of 
the universe. So we have learned something profound about the physical world. 
 
Nobody thought more deeply about a universe that does not exist independent of its 
observation than John Archibald Wheeler. He suggested that we should drop the word 
“observer” from our vocabulary, replacing it with “participator.” The figure below was 
devised by him. He comments on the figure: 
 

Symbolic representation of the Universe as a self-excited 
system brought into being by ‘self-reference’. The universe 
gives birth to communicating participators. Communicating 
participators give meaning to the universe … With such a 
concept goes the endless series of receding reflections one 
sees in a pair of facing mirrors. 
 

David Bohm thought deeply about a universe which is instantaneously connected to 
every other part of the universe. He proposed that underlying our everyday universe, 
which he called the explicate order, there is an underlying order, the implicate, in which 
there is no separation in space or time. The figure is an analogy devised by Bohm. 
 
We can only look at the 
television screens, and we 
see two fish at different 
locations. As we continue 
to look, we start noticing a 
correlation between the 
motions of the two fish. 
This is because underlying the reality of the two screens is a single unity, a single fish, 
that we can only observe from two different perspectives. 
 
So this entanglement business is causing some deep thinking about the nature of the 
world. A pragmatist might say “So what?” Similarly, in the mid nineteenth century 
Faraday, Maxwell and others were thinking about the nature of electricity and 
magnetism. The British prime minister, Gladstone, is reported to have asked Faraday 
what possible use such idle speculations might have. Faraday replied: “Some day, sir, you 
will tax it.”  
 
Entanglement almost certainly has practical applications, which presumably will 
eventually be taxed. These include quantum computers, which may have orders of 
magnitude more power than any conventional computer can possibly achieve, and 
quantum teleportation ala the transporter in Star Trek. Developing these applications is a 
“red hot” field of research and development. 
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To Learn More 
 
Louisa Gilder, The Age of Entanglement: When Quantum 
Physics Was Reborn. (2008). 
 

Reading this book caused me to bring Louisa to 
Toronto for a Physics colloquium in January. The 
photograph was taken at the colloquium. The 
colloquium in turn led to an invitation for me to give 
this talk. The book is available in hardback, paperback, 
and on Kindle.  
 

John S. Bell, “Bertlmann’s Socks and the Nature of Reality” (1980) 
 

The first few sections of my little document are almost plagiarised1 from Bell’s 
classic paper. It can easily be found via Google. 

 
N. David Mermin, “Quantum Mysteries for Anyone” (J. Philosophy 78, p. 397, 1981) 
and “Bringing home the atomic world: Quantum mysteries for anybody” (Amer. J. 
Physics 49, p. 940, 1981). 
 

These nearly identical papers are brilliant. The first version had a large influence 
on Louisa Gilder. I have prepared a Flash animation based on Mermin’s papers: 
 
http://faraday.physics.utoronto.ca/PVB/Harrison/BellsTheorem/Flash/Mermin/Mermin.html 

 
David Bohm, Wholeness and the Implicate Order (1980). 
 

This book discusses Bohm’s thinking about a non-local universe. 
 

David Harrison, “Bell’s Theorem” (1999, last revision 2006). 
 

A long-winded2 discussion with some similarities to this document. It is available 
at: 
 
http://www.upscale.utoronto.ca/PVB/Harrison/BellsTheorem/BellsTheorem.html 
 
I am amazed and pleased that Googling bell’s theorem lists this document 2nd, just 
after the Wikipedia entry. 

                                                 
1 Uh … I mean condensed. 
2 Uh … I mean more complete. 


