
PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 54

Simple Handshaking

Parallel Communications

In the previous section we dealt with the situation where a single wire (or at most two)
was used to communicate between systems. It was therefore necessary that the timing of the
signals be used to establish the significance of the data. In parallel communications there are
more wires running between the two systems and therefore both the spatial (which wire) and
temporal (when) dimensions are available for the data.

Strobes, Enables and Handshakes

In a parallel communication problem there is just as great a need for a protocol and
flow control as in the case of serial communications. Parallel communications however tends
to have a greater emphasis on flow control or "handshaking" for a variety of reasons. The
need for handshakes is really a property of the fact that two devices are running
asynchronously to each other and therefore it is necessary to be able to communicate the fact
that the data is ready/taken to the other device. A handshake may be "tighter" or "looser"
depending upon the circumstances.

The simplest idea of a
parallel handshake is a device
which puts a line up when it is
ready with data (Data Ready or
DR) and then waits for the
interrogating device to take the
data. It must then immediately
remove the request, otherwise
the interrogator may well try to
read the data again. Thus the
regime is as shown in the
diagram.

Now in some devices it is
reasonably easy to see whether
the data has been read,
particularly if you have access to
the computer bus signals and can see whether a read has been done on the appropriate
location. However if the bus signals are not available then some other means must be
invoked, i.e. another communication line, "Data Taken" (DT), to tell the device that data has

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 55

"Classic" Two-Wire Handshake

been taken. Thus we have the sequence:

DR DT

1 device places data onto data bus when DT is low 0 0

2 device raises DR 1 0

3 computer sees DR high and takes the data 1 0

4 computer raises DT 1 1

5 device sees DT high and lowers DR 0 1

6 computer sees DR low and lowers DT 0 0

This complicated sequence of
operations ensures that the two
devices, each of which is
probably intelligent, try to
transfer data only when the other
device can accept it. The
sequence also ensures that each
device can find out the current
state of the transfer sequence
from the state of the Data Ready
and Data Taken lines - there is
no ambiguity.

Now if you read many manuals on many devices, and in particular many peripheral interface
chips such as the MC6821, NSC810, R6522 or a host of others, then you will find a variety
of approaches to the problem of hardware handshaking. The reason for this is that there are
numerous "speed ups" which can be done if you assume things about circuit reaction times,
or build such assumptions in, and in this way things can be made a bit simpler for "dumb"
devices. For instance the 6821 and 810 can both run as follows using a "Buffer Full" (BF):

PHY 406F - Microprocessor Interfacing Techniques

 Actually in a 6821 it's not that short - 2µS, in the NSC 810 it's 500nS8

© James R. Drummond - September 1997 56

Modified Two-Wire Handshake

DR BF

1 device places data on the data bus if BF is low 0 0

2 device raises DR(CA1)(STB) 1 0

3 peripheral chip raises BF(CA2)(BF) 1 1

4 computer reads peripheral chip 1 1

5 peripheral chip clears BF 1 0

6 device clears data ready 0 0

Notice that in this case the
peripheral chip in the computer
has a very fast reaction time
(logic times - nS, rather than
program times µS) to the DR to8

tell the device to "hold up".
Internally the peripheral chip also
allows the computer to see the
state of the control lines and thus
to determine whether data is
ready for pick-up. However
since the chip has a finite
reaction time from DR6BF the
external device must not run too quickly - otherwise it will assume that BF has gone up and
down again whereas it has not yet had time to go up at all - but this time is fairly short .
In fact since the input only reacts to the edge of DR then a pulse will suffice to latch the
request into the peripheral chip.

The main cause of this trouble in this handshake is the ambiguity between states 2)
and 5) which have the same state of the DR and BF lines. In the absence of unambiguous
state determination from the state of the lines some additional book-keeping is necessary.

PHY 406F - Microprocessor Interfacing Techniques

 "Active low" implies that the lines are doing what they imply when they are in the low state.9

Thus NRFD is low when a device is "Not Ready for Data" and conversely is high when it is "Ready
For Data"

 Thus taking NRFD as an example: Any device can hold the NRFD line down (asserted). All10

devices must negate NRFD (ie be ready for data) before the line itself goes high.

© James R. Drummond - September 1997 57

The parallel peripheral chips therefore simplify life for devices because they allow for
a very simple control structure at rather higher speeds than those allowed by the computer
itself. This is in fact the major reason for having a peripheral chip to do some of the work
for you rather than the "bare" provision of an input/output port. (However in reality the
chips are so cheap that you can afford to buy them for the port alone)

Multiple Receivers

There are more problems when a single device is required to transmit data to a
number of receivers because the "data taken" lines from all devices must go high before the
next stage in the cycle can be initiated and in fact three lines are required.

We will illustrate the problem of a parallel network by discussing the "IEEE488" bus
which is extensively used in instrumentation systems. It has the required three control lines
called "DAV" (Data AVailable), "NFRD" (Not Ready For Data) and "NDAC" (Not Data
ACcepted) and all these lines are active low . DAV is controlled by the sending device and9

the other two lines are of the "wired-or" topology . 10

The following is an explanation of the above protocol based on 3 wires
(DAV/NRFD/NDAC). As well as describing the sequences required for data transfer, it
illustrates three different ways of showing such a set of events: a timing diagram, a flow
chart and a state diagram. All three are equivalent descriptions which have different
applications. For example the timing diagram is particularly useful if you are
troubleshooting with an oscilloscope. The flow chart is useful if you are writing a software
interface and the state diagram is useful if you are designing a controller using a
Programmed Logic Array (PLA) with a "silicon compiler". In the diagrams the times when
some of the devices have responded but others have not is represented in grey.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 58

List of Events for IEEE488 Handshake Process
(Numbers correspond to those on timing diagram and flow chart)

Initialisation
1. Source initialised DAV to high (data not valid)

2. Acceptors initialise NRFD to low (nobody ready for data) and set
NDAC low (none have accepted data). They will then come ready for
data one at a time until all are ready and NRFD is de-asserted. This
occurs by point 5 below.

Cycle 1
3. t Source checks for error condition (both NRFD and NDAC high): then-2

sets data byte on DIO lines

4. t 6 t Source delays to allow data to settle on DIO lines-2 0

5. t Acceptors have all indicated readiness to accept first data byte; NRFD-1

high.

6. t Source, upon sensing NRFD high, sets DAV low to indicate that data0

on DIO lines are settled and valid.

7. t First acceptor sets NRFD low to indicate that it is no longer ready, then1

accepts that data. Other acceptors follow at their own rates.

8. t First acceptor sets NDAC high to indicate that it has accepted the data.2

(NDAC remains low because it requires all the acceptors to set NDAC
high before going high)

9. t Last acceptor sets NDAC high to indicate that it has accepted the data;3

all have now accepted and NDAC goes high.

10. t Source, sensing that NDAC is high, sets DAV high. This indicates to4

the acceptors that data on the DIO lines must now be considered not
valid.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 59

Overlap Between Cycles
11. t 6 t Source changes data on DIO lines4 7

12. t 6 t Source delays to allow data to settle on DIO lines7 9

13. t Acceptors, upon sensing that DAV is high, set NDAC low in5

preparation for the next cycle. NDAC line goes low as the first
acceptor sets the line low.

14. t First acceptor indicates that it is ready for the next byte by setting6

NRFD high. (NRFD remains low because other acceptors are not
ready)

15. t Last acceptor indicates that it is ready for the next data byte by setting8

NRFD high. NRFD line goes high
Cycle 2
16. t Source, upon sensing NRFD high, sets DAV low to indicate that data9

on DIO lines are settled and valid

17. t First acceptor sets NRFD low to indicate that it is no longer ready, then10

accepts the data.

18. t First acceptor sets NDAC high to indicate that it has accepted the data.11

19. t Last acceptor sets NDAC high to indicate that it has accepted the data.12

20. t Source, having sensed that NDAC is high, sets DAV high.13

EndGame

21. Source removes data byte from DIO signal lines afeter setting DAV
high.

22. t Acceptors, upon sensing, DAV high, set NDAC low in preparation for14

next cycle.

23. Everything back in the initial state

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 60

IEEE-488 Flow Chart

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 61

IEEE-488 Bus Timing Diagram

IEEE-488 Bus State Diagram

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 62

Use of START and FINISHED Lines

In the state diagram note that a "1" indicates assertion of the condition - the
representation has no relationship to the logic level on the line. We can also see that two of
the states - the ones corresponding to NRFD and NDAC being asserted - are not used and
are therefore illegal. The initialisation takes us to state 011 and then the cycle proceeds anti-
clockwise. Note that the first bit (DAV) is under the control of the source and the other two
bits are under the control of the acceptor(s).

"Start" and "Finished" Lines

A simpler case occurs in devices which require a "start" command and then produce
a "finished" line:

1) computer activates "start"
2) computer waits, interrogating "finished" until -
3) device completes and raises "finished"
4) computer reads result

notice that in this case it is assumed that the "start" command resets "finished".

Edge vs level
In most cases it is the

leading edge of the "START"
line which initiates the action.
Beyond a minimum pulse length,
the actual pulse length is
immaterial - even if "START" is
still high when "FINISH"
becomes high a new cycle is not
initiated. This is
edge-triggering.

On the other hand, some systems are "level sensitive" in that a new cycle is initiated
as soon as a "high" level is detected on the "START" line. Under these conditions it would
be reasonable to assume that a new cycle would begin immediately if START were still high
when FINISHED goes high. (However check the data sheets for confirmation before
assuming anything!)

PHY 406F - Microprocessor Interfacing Techniques

 The requirement of determining maximum and minimum delays raises problems in practical11

logic designs in that data sheets always show "typical" delay figures, frequently show "maximum"
figures and rarely show "minimum" figures. Matching "typical" figures is not good enough as the
system will "usually" work - but not necessarily always. The most stringent rule if no minimum delay
is given is to assume that the minimum is zero. A better approach is to use system components which
do quote minimum delays and/or to consult the manufacturer.

© James R. Drummond - September 1997 63

Address Validity on a Memory Bus

Data Ready
The concept of DATA READY requires some attention in that the raising of DATA

READY implies that the data is guaranteed to be available, not that it will be available "real
soon now"! A particular trap to avoid is when some data buffering is performed, perhaps
to transfer data onto a heavily loaded (in the logic sense) bus. This effectively delays the
data at the destination relative to the DATA READY which might not need so much
buffering.

It is imperative that even with the maximum data delay and the minimum DATA
READY delay, the data is still valid before DATA READY goes high. If this cannot be
guaranteed, then DATA READY must be delayed sufficiently to guarantee the condition.11

Address Valid
As an example of this

problem of guaranteeing that the
data is valid before raising the
“data valid” line, consider the
case of a computer bus wishing
to indicate that an address is
valid.. In this system some
additional decoding of part of the
data (which in this case is
actually the address value) is
required in order to gate an
appropriate "Address Valid" signal. The situation is complicated by the fact that there must
be a separate “address valid” line for each memory chip in the memory to indicate to the chip
that it is in fact being addressed. There is therefore a requirement for several stages of
address decoding and problems with ensuring that the delays in the logic system are handled
properly.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 64

Two things are important here. First to ensure that the decoding of the appropriate
segment of the memory (ie the particular chip) is completed before the "Address Valid" line
goes high. Second to ensure that none of the possible address valid lines go high under any
circumstances except the correct one of a decoded "Address Valid".

The first is addressed by ensuring that the decoding is complete before the master
"Address Valid" goes high (considering maximum and minimum delay times appropriately).
The second is ensured by using the final level of gating as a conditional gate using the master
"Address Valid". In the example given earlier, "Address Valid" was fed into a "368 line
decoder". The enable inputs of these decoders are designed in precisely this manner - a final
level of gating to ensure that no invalid outputs are possible.

Since, in general, the complexity of address decoding increases with memory size,
the delays also increase and the memory tends to become slower. In order to counteract this,
there is strong motivation to use the largest memory blocks (chips) available - there are other
reasons as well, such as cost and size. If a 16M x 8bits memory is required, less decoding
is required with 16M x 1bit chips than with 1M x 1bit chips or even 2M x 8bit chips. Notice
that if the chips are all of the same nominal access speed, then the memory constructed with
16M x 1 bit chips will tend to be faster because of the lack of decoding logic.

