
y[n] ' j
M

m ' 0

h[m] x[n & m]

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 131

Filtration

Now that we have looked at the concept of interpolation we have seen practically that
a "digital filter" (hold, or interpolate) can affect the frequency response of the overall
system. We need to codify this and understand it.

The general form of the convolution sum for a "Finite Impulse Response" (FIR) filter is:

There are two issues to be aware of at here:

1) What sort of frequency responses can we "cook up" using various forms of h[t]

2) How fast can we implement these in a system

To deal with the second item first. There now exist families of specialised computers
called "Digital Signal Processors" (DSPs) which are optimised for this sort of function. One
of the simpler ones - the Motorola DSP56001 - is capable of evaluating such a sum at a rate
of 16 x10 terms/second. This means that with a bit of overhead it can handle about 12-136

term convolutions at 1MSample/second - a Nyquist frequency of 500kHz. There are faster
processors. Thus for the low frequency end of things the hardware is quite easily available.

Now to look at the first problem - what sort of frequency responses can we generate?
The general answer to this is very complicated as there is no perfect procedure for getting
from the frequency response which is required to the set of coefficients for h[t]. What I am
going to do is suggest some ideas and show you at least one example. If you want to pursue
this problem any further, then you will need to do some more extensive reading.

We first note that the set of coefficients should be symmetrical. For high-pass filters
the total number of coefficients should also be an odd number. There are good reasons for
this concerned with the phase response of the system which I won't go into here.

Now without any further ado, let's try to design a filter which is lo-pass and cuts off
at F = 1/4T - half the Nyquist frequency. We also know that we want to pass frequencies
20% below that, 0.2/T, and reject frequencies 20% above that, 0.3/T. This specifies the cut-

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 132

Common Windowing Functions

off frequency and the "transition band",)f = (0.3-0.2)/T. Since we can't design a "brick-
wall" filter exactly we are going to have to do some approximation and we shall need to
know how much attenuation we want in the stop band. This is assigned at -60dB or 10 .-3

Now before we go on I should point out that this is a very challenging design in analog
terms. The main problem with analog filters is matching the components to high precision -
as the filter becomes more precise then the matching becomes more critical. Aging and
general component drift as well as difficulty of manufacture take a severe toll in terms of
cost and reliability. On the other hand a digital filter either works or it doesn't and if we
produce 1000 of them, they are all identical.

Above we noted that the
main problem with a "brick-
wall" filter was that it had an
infinite impulse response and so
couldn't be implemented.
However if we multiply the
impulse response by a function
which actually goes to zero at
finite time then the response
becomes finite. Multiplication in
the time domain is convolution in
the frequency domain and so this
will tend to "spread" the
rectangle in the frequency
domain. This procedure, known
as "windowing" allows a
controlled approximation to the ideal. There are a fair number of window functions
available. Some common ones are:

Square pulse - no further explanation needed

Triangular pulse (Bartlett) - similar to the interpolation filter we used above

Cosine function (Hanning) - (1+cosx) out to x = ±B

Modified Cosine (Hamming) - (1.08+0.92cosx) out to x = ±B.

Blackman - (0.84-cos(x)+0.16cos(2x)) out to x = ±B.

I0(x) ' j
4

n ' 1
k

n

m ' 1

x
2m

2

$ '

0.1102 (A & 8.7)
0.5842 (A & 21)0.4 % 0.07886(A & 21)
0.0

A > 50
21 # A # 50

A # 21

M '
A & 8

14.357 T)f

sin2BFT(n & ")
B (n & ")

I0[$ (1 & [(n & ")/"]2)1/2]

I0($)
0 < n < M

PHY 406F - Microprocessor Interfacing Techniques

 Evidently we will need to know how to calculate I (x). A formula is31
0

© James R. Drummond - September 1997 133

Kaiser - a window based on the zeroth-order modified Bessel function I (") .0
31

I ($(1!x))/I ($). Notice that this window has a second parameter $, which controls0 0
2 1/2

it's shape.

Now we need some "cooking" formulas to help us decide how long a series we will
need and what the coefficients will be. For the Kaiser window, there are some good
formulae which state that if A is the required attentuation in dB, F the cut-off frequnecy and
)f is the transition band both expressed in terms of the sampling rate T, then the term $ is
given by:

and the total length of the series is given by:

and finally the series itself is given by:

where " = M/2.

For our problem:

F ' 0.25/T
)f ' 0.1/T
A ' 60

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 134

Kaiser Window for $=5.653 Coefficients of FIR Filter example

Linear Response of Filter Log Response of Filter

Thus from the first formula $ = 5.653, from the second M = 36.2 or, since M must be
integer M = 37 and then " = 18.5.

The Kaiser window given by this formula and the set of coefficients which result are shown
graphically below:

Then the response is given below.

Since the linear response is so good, we need to use the log or dB plot to verify that
the performance is being met. Now it appears that the specification is being violated in the

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 135

first part of the passband. I can't tell whether this is due to my analysis routines or to an
actual failure - in which case we would need a slightly longer series. Remember that the
response of this filter is actually even about the origin and repeats aobut 1/T, the sampling
frequency so that the plot immediately starts to mirror after the 0.5 mark.

A further point is illustrated in the dB plot (which is also known as a Bode plot) in
that I played with the coefficients by changing the length of the represention of the number,
ie changing the precision with which it is stored. I used a common storage method for these
coefficients which is to use a "fixed-point fraction" which means that the MSB of the binary
representation represents 1/2, the next 1/4 and so on to the LSB. The plots for 24-bit
precision and 16-bit precision are identical to the resolution of the graph, but at 8-bit
resolution the performance is degraded. This is equivalent to the problem of matching
components in an analog filter - and has the same degrading effect on the performance.

The actual coefficients are shown below. Since the coefficients are symmetric only
the first half of the sequence is tabulated to save space.

Term 24-bit 16-bit 8-bit
precision precision precision

0 0.00000000 0.00000000 0.00000000
1 0.00061631 0.00061035 0.00000000
2 0.00153953 0.00152588 0.00000000
3 -0.0028491 -0.00285339 -0.00390625

6
4 -0.0046353 -0.00463867 -0.00781250

3
5 0.00700122 0.00698853 0.00390625
6 0.01006670 0.01005550 0.00781250
7 -0.0139745 -0.01397710 -0.01562500

0
8 -0.0189013 -0.01890560 -0.01953120

0
9 0.02507850 0.02507020 0.02343750
10 0.03282610 0.03282170 0.03125000
11 -0.0426185 -0.04263310 -0.04296880

0
12 -0.0552090 -0.05522160 -0.05859380

0
13 0.07189540 0.07188420 0.07031250
14 0.09513620 0.09512330 0.09375000
15 -0.1302270 -0.13023400 -0.13281200

0

sinB(n & ")
B (n & ")

&
sin2BFT (n & ")

B (n & ")

I0[$ (1 & [(n & ")/"]2)1/2]

I0($)
0 < n < M

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 136

Coefficients of Hi-Pass Filter Log Response of Hi-Pass Filter

16 -0.1909930 -0.19099400 -0.19140600
0

17 0.32826700 0.32826200 0.32812500
18 1.00000000 1.00000000 1.00000000

So we have seen that using an real procedure we can actually design a filter which can
achieve a reasonable performance using a very modest number of terms. I stress that this
is not the only way of designing a filter - there are many computer programs which perform
the same task - but this method is clearly laid out as a set of procedures.

So much for lo-pass filters - how about hi-pass ones. Well here we can appeal to the
properties of linear systems to say that a hi-pass filter is the result of subtracting a lo-pass
filter from an all-pass filter (one which passes all frequencies). Further since the sampled
functions are even in frequency and repeat at the sampling freqency 1/T, an all-pass filter is
the same as a low-pass filter with a cut-off at 1/2T. Thus the design proceeds in exactly the
same manner except that the coefficients are given by:

To cut a swift calculation short here is the coefficient plot and the impulse response:

and the coefficients are:

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 137

Term 24-bit
Precision

0 0.00000000
1 -0.00187761
2 0.00080466
3 -0.00148916
4 0.01412050
5 -0.02132800
6 0.00526148
7 -0.00730395
8 0.05757900
9 -0.07639660
10 0.01715700
11 -0.02227500
12 0.16818300
13 -0.21901500
14 0.04972400
15 -0.06806450
16 0.58182300
17 -1.00000000
18 0.52266200

One final note is the "roll-off" at the high frequency end of the hi-pass response. This is
fundamentally due to the fact that there is an even number of coefficients in the convolution.
If you look back in the notes, you will see that I said that hi-pass filters should have an odd
number of coefficients.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 138

DAC Using Interpolation and a Digital Filter

Now that we have seen an example of a filter design here is an application - the
interpolation problem we were looking at earlier. You will remember that when we
resampled the series with the zeros we moved the Nyquist frequency up but left the spectrum
unchanged. In order to improve the "cleanliness" of the output and give any analog filters
on the output of the DAC an easier time (ie easier design criteria) we need to get rid of the
stuff around the Nyquist freqency. Our lo-pass digital filter designed above is just the job
since it passes frequencies up to 1/2 the Nyquist and rejects betwween 1/2 and 3/2 the
Nyquist - however it "turns on" again then and continues up to the sampling frequency. Now
when the output is sent through the DAC there will be the required spectrum, nothing around
Nyquist and something around the sampling freqency, but that will also be somewhat
attenuated by the sincx function of the DAC. A relatively modest analog filter will be able
to pass the baseband and remove the higher frequencies.

We have therefore made real progress in moving the problem of filtering from the
analog domain to the digital domain.

Other Filter Forms and Other Considerations

y[n] ' j
4

m'0

a[m] x[n & m] % j
4

m'0

b[m] y[n & m]

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 139

The major problem with the above filter functions is that they do not allow an impulse
function which decays to zero smoothly - there must be some cut-off at a finite number of
terms. A modification of the filter function which allows the impulse function to decay to
zero smoothly is:

It is apparent that the filters discussed above are simply those for which b = 0 - they arem

Finite-Impulse Response (FIR) filters. The more general case is the Infinite Impulse
Response (IIR) filter for which both sets of coefficients are non-zero. The use of recursion
in the filter function gives the property of slow decay to zero, lessens the number of terms
required in implementation of some filter functions and renders the link to the transfer
function more obscure!

An obvious problem is that the definition of an analog filter is (comparatively) simple
- define h(t), but the translation into a set of coefficients, particularly for the case of the
recursive filter is not simple. There are three general techniques for doing it which I shall
mention only briefly:

- Match the Impulse Response as discussed above

- Map the Poles and Zeros. Essentially this involves expanding the impulse function
in both cases (analogue and digital) into a ratio of polynomials and then
matching the roots of the polynomials in the denominator (poles) and
numerator (zeros). However this has to be done in complex space.

- Bilinear Transformation. Use a transformation between the analogue and digital
descriptions which happens under reasonable conditions to map one function
into the other fairly well.

You will note that there is no "magic solution" for this problem.

Another technique for filtering a time series is to perform a fourier transform on the
series to get a frequency series, multiply the frequency series by the filter function in
frequency space and then transform back to the time series again. Although processing
speeds for fourier transforms have speeded up considerably recently this is not a high-speed
techniques and is more suited to "off-line" problems than "real-time" filtering. However one

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 140

Result of Decimation - Aliasing is evident in this Case

would have said that about the whole subject of digital filtering 10 years ago.

Decimation

If interpolation is a technique which is discussed primarily when considering DAC
systems, then decimation - the removal of samples from a series to lower the effective
sampling rate - is linked to the concepts of an ADC.

ADCs are of two main type for this discussion: spot value and averaging. We will
first consider the spot value type.

We already understand quite clearly what is needed in order to make the system
operate properly: In order to avoid aliasing we need to ensure that the input to the converter
is band-limited to less than the Nyquist frequency before the digitiser. For a 12-bit digitiser
this implies a response that is 1/4096 or about -72dB down at the Nyquist frequency.
However we wish to look at all frequencies up to the Nyquist frequency. We therefore need
a very sharp cut in the filter to ensure these two conditions are met. However sharp analog
cut-off filters are very difficult to construct.

PHY 406F - Microprocessor Interfacing Techniques

© James R. Drummond - September 1997 141

Aliasing is Eliminated by the Digital Filter

An obvious way to fix this is to increase the sampling rate that raises the Nyquist
frequency and gives more room for the analog filter to cut-off the alised frequencies after the
required passband - but now the data rate is rising. The solution is to use a high digitiser
rate and then to "decimate" the output. Decimation removes every "nth" sample and
therefore reduces the data rate.

Decimation by a factor of two is equivalent to multiplying the time series by an array
of delta functions spaced 2T apart which in turn is equivalent to convolving the frequency
spectrum with the fourier transform of the array of delta functions. We know that the
transform of an array of delta functions spaced 2T apart is another array of delta functions
spaced 1/2T apart. So applying the rule of multiplication in the time domain equals
convolution in the frequency domain we find that the result of decimation by two is to halve
the Nyquist and sampling frequency and to modify the frequency spectrum to repeat about
the new sampling frequency.

So it is important, if we are to decimate the series successfully that the frequency
spectrum be limited to half of the original (higher) Nyquist frequency so that it not extend
beyond the Nyquist frequency at the lower sampling rate. Sounds like a job for the digital

PHY 406F - Microprocessor Interfacing Techniques

 Actually, since the filter is not a strict "brick-wall" filter it won't do as it does pass frequencies32

above the Nyquist to some extent. However it does well to illustrate the idea.

© James R. Drummond - September 1997 142

filter discussed above again! 32

So a successful system will analog filter the input to preserve the required frequency
spectrum (below the final Nyquist frequency) and reject everything above the initial Nyquist
frequency, then digitally filter the time series which will limit the bandwidth to one half of
the initial Nyquist frequency, and finally decimate the series. By this means we can put the
severe filtering requirement in the digital section and the sloppier requirement in the analog
section.

