
October, 1998

PHY307F/407F - Computational Physics
Background Material for Expt. 5 - Visualisation of Ozone Data

David Harrison

"The words or the language, as they are written or spoken,
do not seem to play any role in my mechanism of thought.
The psychical entities which seem to serve as elements in
thought are certain signs and more or less clear images
which can be ’voluntarily’ reproduced and combined... this
combinatory play seems to be the essential feature in pro-
ductive thought before there is any connection with logical
construction in words or other kinds of signs which can be
communicated to others."

- Albert Einstein in a letter to Jacques Hadamard

INTRODUCTION

The topic of Scientific Visualisation is yet another example of the use of com-
puter technology to do something that could in principle be done by hand given suf-
ficient time. But in common with many other topics of this course, the technology
makes it feel to us that we are doing something qualitatively different from what is
possible without computers. The ‘leading edge’ of scientific visualisation is very
close to the technology of virtual reality; this experiment is far from that edge.

Recall Anscombe’s quartet of data that you examined in Experiment 1: four
data sets, each consisting of 11 {x,y} pairs. The means of the x’s and y’s were
virtually identical. Each data set fit to virtually the same straight line, with the
same intercept, slope, error in the intercept, error in the slope, and sum of the
squares. Only when we examined the graphs of the data did we realise what was
going on. So this is one crucial example of scientific visualisation.

In this experiment we will be examining another case where visualisation is
vital: when the quantity of data is so large that it is difficult to detect patterns in
the data using any other technique. Our primary dataset will be for ozone levels in
the upper atmosphere: each set contains 51,840 numbers. We will also be using a
smaller dataset of groundwater levels for testing which has only 30 numbers.

Commercial visualisation software costs in the thousands of dollars. One of
the largest markets for the software is in the medical industry, and this implies
that huge attempts are made by the developers to provide powerful calculational
tools to people with little understanding of the underlying mathematics. The same

Visualisation

- 2 -

software is also of great use to people who do understand the mathematics, how-
ever, and is used by some physicists in this Department. We will be using the rich
but comparatively "low level" graphical environment of Mathematica for our inves-
tigation of visualisation; this is probably the right choice for a teaching application
even if some vendor decided to donate commercial visualisation software to
UPSCALE. Nonetheless as a dedicated single-purpose tool, commercial visualisa-
tion software often requires less computing resources than the general-purpose
graphics of Mathematica.

The human visual system can simultaneously distinguish between approxi-
mately 15 different shades of gray. Thus in a visualisation of a dataset using a
black and white graphic, only about 15 different values can be perceived, regardless
of how many different shades are actually displayed in the graphic. The visual sys-
tem can distinguish about an order of magnitude more colors than "gray scales";
thus a color graphic can provide much more information than a black and white
one. This implies that visualisation systems require extensive computational and
graphics capability. The design of "color maps" assigning particular numeric values
to particular hues is an art using information about the type of data being used and
what should be emphasised, factors in our human visual and cognitive systems, and
more.

This document is organised as follows:

I. The Ozone Data: experimental details of how the data were taken.

II. Filling Missing Data: comparing methods of filling in missing data points.

III. Cubic Spline Interpolation: yet another method of filling in missing data.

IV. References.

V. Code Listing: a listing of the package you will be using in the experiment.

I. THE OZONE DATA

The ozone data were taken by the Total Ozone Measurment Spectrometer
(TOMS) aboard the Nimbus 7 satellite. The remainder of this section contains
extracts from the document by Guimaraes and McPeters that accompanies the
CD-ROMs containing the data.

Nimbus 7 is in a south-north sun synchronous polar orbit such that it is
always close to local noon/midnight beneath the satellite. Thus, ozone over the
entire world is measured every 24 hours. TOMS measures ozone by measuring the
ultraviolet sunlight scattered from the Earth’s atmosphere. Total column ozone is
inferred from the differential absorption of scattered sunlight in the ultraviolet.
Ozone is calculated from the ratio of two wavelengths, 312 nm and 331 nm for

Visualisation

- 3 -

instance, where one wavelength is strongly absorbed by ozone while the other is only
weakly absorbed. Ozone is measured in a 50 km square field of view of the instru-
ment.

TOMS collects 35 measurements every 8 seconds as it scans from right to left,
giving about 200,000 ozone measurements every day. These individual measure-
ments have been averaged and converted to byte images which are scaled between
100 and 650 Dobson units (DU). A dobson unit is a measurement of the thickness of
the ozone layer as an equivalent layer of pure ozone gas at NTP conditions (normal
temperature and pressure at sea level), so that 300 Dobson units would equal 3 mm
(about a tenth of an inch) thickness of pure ozone gas at NTP conditions.

Because TOMS measures ozone using scattered sunlight, it is not possible to
measure ozone in the polar winter region where the sun never shines. Consequently,
maps of the Antarctic ozone hole for August and September, for instance, will always
have an area of missing data due to the polar night. [Some] days occasionally have
large areas of missing data because of missing orbits.

A ... type of edge effect will be noticed in the polar plots consisting of apparent
discontinuities in the ozone field. Since TOMS takes 24 hours to map the entire
earth, at the day boundary the ozone measurements have been taken almost 24 hours
apart. If the ozone is changing with time, this will produce the observed discon-
tinuity.

II. FILLING MISSING DATA

In the early 1990’s, Spyglass Inc. marketted a version of the now-defunct
Mosaic world wide web browser, and also sold software for visualisation of data. In
this section, we summarise some techniques on filling in missing data points as dis-
cussed in a handbook by Brand Fortner from Spyglass.1

The handbook uses a sample dataset of groundwater levels, extracted from a
much larger matrix of data collected by Dr. Wolfram Herth. The data are:

1. Chapter 11.

Visualisation

- 4 -

Groundwater Levels

-15.91 0 -16.30 0 -16.68
0 0 0 0 0
0 0 0 0 0

-14.15 -14.37 0 0 0
-13.36 -13.57 0 0 -13.96

0 -12.56 -12.75 -12.89 -12.98

In the above, zeroes indicate missing data points.

A very simple method of filling in the missing data is to use the value of the
nearest neighbor. Fortner displays the following as the dataset after using the
nearest neighbor method:

After Nearest Neighbor Fill

-15.91 -15.91 -16.30 -16.30 -16.68
-15.91 -15.91 -16.30 -16.30 -16.68
-14.15 -14.37 -14.37 -13.96 -13.96
-14.15 -14.37 -14.37 -13.96 -13.96
-13.36 -13.57 -12.75 -12.89 -13.96
-13.36 -12.56 -12.75 -12.89 -12.98

Note that in the above, data points which were missing and did not have a non-
missing nearest neighbor have been filled in. You should be able to understand
how this happened.

Next, Fortner uses a technique he calls Linear Interpolation where the
missing data values are interpolated from the closest data values in the same col-
umn, the same row, or both. For example:

After Linear Interpolation along Rows

-15.91 -16.10 -16.30 -16.49 -16.68
0 0 0 0 0
0 0 0 0 0

-14.15 -14.37 -14.59 -14.80 -15.02
-13.36 -13.57 -13.70 -13.83 -13.96
-12.37 -12.56 -12.75 -12.89 -12.98

Note that because there were no data points in rows two or three, these rows

Visualisation

- 5 -

remain empty.

A way of filling in rows two and three is to interpolate first along columns, and
then along rows:

After Interpolating Columns and then Rows

-15.91 -16.44 -16.30 -14.69 -16.68
-15.33 -15.75 -15.66 -14.41 -16.07
-14.74 -15.06 -15.02 -14.13 -15.45
-14.15 -14.37 -14.38 -13.85 -14.83
-13.36 -13.57 -13.58 -13.36 -13.96
-12.47 -12.56 -12.75 -12.89 -12.98

Another method Fortner calls Smooth Fill. Here, each missing data point is
replaced by an average of all of its non-missing immediate neighbors:

After a Single Smooth Fill

-15.91 -16.11 -16.30 -16.49 -16.68
-15.91 -16.11 -16.30 -16.49 -16.68
-14.26 -14.26 -14.37 0 0
-13.86 -13.86 -13.97 -13.96 -13.96
-13.60 -13.46 -13.22 -13.14 -13.28
-13.16 -13.06 -12.94 -13.14 -13.28

Note that there are still two missing values in the above, because in the original
data they had no non-missing neighbors. Also note that the routine has modifed
known data values.

A second Smooth Fill pass will eliminate the two missing values in the above
data. Since the method is replacing known values with averages, it will also
smooth out the variations in the dataset. In fact, if one does enough passes using
this method all the data points will end up having the same value!

An extension of the idea behind Smooth Fills comes from the realization that
the closer a data point is to the missing value to be filled, the more weight we
should give it in the average. Thus, in a Weighted Fill we include data points fur-
ther away from the missing value than just the nearest neighbor, but give them a
reduced weight in the calculation.

Various functions can be used in calculating the weighting factors, such as a
Gaussian, or 1/r, or 1/r2, etc.

Visualisation

- 6 -

Note that all of the above functions only approach zero asymptotically. So
that the computer does not spend an inordinate amount of time using data points
very far away from the point to be filled, commonly a cutoff radius is defined, and
points further away from the missing value than that radius are not used in the
weighted fill. Sometimes the selection of a value of the cutoff radius can be made
by understanding the data itself. Otherwise, one may reason as follows: If there
are no missing values, then the number n of data points inside a radius r is:

n = πr2

If a fraction f of the data is not missing, then the number of non-missing data points
inside the radius r is:

n = fπr2

Thus, a reasonable choice for the cutoff radius is:

rcutoff =


 fπ

n 



0.5

III. CUBIC SPLINE INTERPOLATION

You may recall that in the background material for the experiment on Fitting
Techniques we briefly mentioned but did not investigate fits in which a model is not
available or appropriate: such fits are called nonparametric . In this section we dis-
cuss a type of nonparametric fit that can be used for filling in missing data.

Of course, if a model for the data is available, one may simply fit the data, say
by rows, to the model and then use the fit results to interpolate and possibly extrap-
olate to fill in missing data points.

Consider using a French curve to draw a smooth curve through a graph of
some data. You break the data into a series of segments and try to find a part of the
French curve to smoothly connect the points in each segment. At the ’knots’
between the segments you adjust so the two curves meet and the slopes are continu-
ous. A cubic spline is essentially a computerised French curve, where the data in
each segment is fit to a cubic polynomial. This is clearly a nonparametric fit: there
is probably no theoretical reason why a cubic polynomial should fit the data, but it
usually provides a sufficiently smooth way of "connecting the dots." Mathematica ’s
Interpolation procedure does cubic spline interpolations where each data point
is one of the knots, and the fits are constrained to go through each data point
exactly.

Visualisation

- 7 -

In the experiment you will be investigating a routine that uses the Interpo-
lation procedure to fill in missing data points.

Another type of cubic spline interpolation allows the user to choose the posi-
tion of the knots. In this case, the interpolation tends to smooth out noise in the
data. Such an interpolation is used in, for example, the Mass Spectrometer experi-
ment in the III & IV Year Physics Laboratory.

A further issue with many filling methods, including this one, is what is the
largest block of missing data which should be filled. The answer to this question is
subtle, and usually depends on the largest size of a block of non-missing data that
does not show significant structure inside it.

IV. REFERENCES

• Brand Fortner, The Data Handbook (Spyglass Inc., 1992).

• P. Guimaraes and R. McPeters, Eds., "TOMS Ozone Image Data 1978-1991",
(NASA Goddard Space Flight Center).
This is the document that accompanies the CD-ROMS containing the ozone
data.

V. CODE LISTING

(*

* Support package for Expt 5: Visualisation of Ozone Data.

* All routines written by David Harrison.

*

* Contents visible from outside the package:

* LoadDu[] - load a day’s data.

* TableDu[] - form a table of parts of multiple day data.

* FillData[] - fill in missing data.

* DoNearestNeighbor[] - fill using nearest neighbor. Default

* method used by FillData[]

* SurroundIt[] - actually an internal routine used by DoNearestNeighbor[]

* but made accessible from outside the package for this experiment.

* GroundWaterData

*

* Internal routines:

* columnInterpolate[] - optionally used by FillData[]

* rowInterpolate[] - optionally used by FillData[]

*

* @(#)Expt5.m 1.10 U of T Physics 01/12/96

*

Visualisation

- 8 -

* LoadDu, TableDu are Copyright (c) 1993, 1994, 1995 by David Harrison.

*

* FillData, DoNearestNeighbor, SurroundIt, columnInterpolate,

* rowInterpolate[] and smoothFill are Copyright (c) 1995

* by Wolfram Research Inc.

*)

(* Graphics‘ParametricPlot3D‘ for SphericalPlot3D[] *)

BeginPackage["PHY307F‘Expt5‘", "Graphics‘ParametricPlot3D‘"]

FillData::usage =

"FillData[data] fills in missing values in the matrix of values ‘data‘.

The default Method is NearestNeighbor, and the routine determines which

values are to be filled by the definition of MissingIs, which by default

is 0."

DoNearestNeighbor::usage =

"DoNearestNeighbor[data,missing] fills in missing values in the matrix

of values ‘data’ by replacing elements whose value is equal to ‘missing’

with the value of its nearest neighbor."

SurroundIt::usage =

"SurroundIt[data, missing, n] takes a matrix ‘data’ and inserts and

appends n rows and columns of value equal to ‘missing’. Thus, the

original matrix contains ‘rows’ rows and ‘cols’ columns, it returns

a matrix of ‘rows + 2*n’ rows and ‘cols + 2*n’ columns."

Options[FillData] = {

MaxIterations -> 1,

Method -> NearestNeighbor,

MissingIs -> 0,

StructureSize -> Infinity

}

NearestNeighbor::usage =

"NearestNeighbor is the default Method for FillData. This Method fills

in missing values with duplicates of an adjancent non-missing neighbor.

Other Methods are ColumnInterpolation and RowInterpolation."

ColumnInterpolation::usage =

Visualisation

- 9 -

"ColumnInterpolation is an optional Method for FillData. This Method

fills in missing values with interpolations from non-missing values in

the same column."

RowInterpolation::usage =

"RowInterpolation is an optional Method for FillData. This Method

fills in missing values with interpolations from non-missing values in

the same row."

MaxIterations::usage =

"MaxIterations is an option to various routines that use

iterative techniques, and specifies the maximum number

of iterations to perform before quitting."

MissingIs::usage =

"MissingIs defines contents of cells in a matrix of data that

FillData assumes are missing data."

StructureSize::usage =

"StructureSize is an Option for FillData when the Method is

RowInterpolation or ColumnInterpolation that specifies the size of

structures in the data. If a block of missing values is greater than

the value of StructureSize, that block is not interpolated."

FillData::badopt = "Option ‘1‘ is not known."

FillData::nomethod =

"Method ‘1‘ is not valid for FillData."

GroundwaterData::usage =

"GroundwaterData is made up data on groundwater from Brand

Fortner, \"The Data Handbook\" (Spyglass Inc., 1992), pg. 155.

Missing data are represented by a value of zero."

LoadDu::usage =

"LoadDu[day] loads the TOMS data for a day during December 1988.

The argument day is a number between 01 and 31 and determines the

day of the month that is loaded."

TableDu::usage =

"TableDu[{day1, day2, daycounter}, {latbin1,latbin2,

latcounter}, {longbin1, longbin2,longcounter}] uses LoadDu[]

Visualisation

- 10 -

to load the data for day1 through day2 in increments of daycounter.

It extracts the latitude bins latbin1 through latbin2 in increments

of latcounter, and extracts longitude bins longbin1 through longbin2

in increments of longcounter. If invoked as:\n

\tthetable = TableDu[{10,15,1}, {10,20,1}, {30,40,1}];\n

then thetable[[a]] contains the du data for the a’th day in the

table, thetable[[a, b]] contains the longitude data for

the a’th day and the b’th latitude bin of the table, and

thetable[[a,b,c]] contains the single du value for the a’th day,

b’th latitude bin and c’th longitude bin of the table.

CAUTION: the routine removes all variables that begin with the

letters ’dec’ from your session."

LoadDu::noday = "day must be an integer between 1 and 31."

Begin["‘Private‘"]

FillData[data_?MatrixQ, opts___?OptionQ] := Module[

{

i, (* dummy variable *)

iter, workdata,

optMaxIterations,

optMethod,

optMissingIs,

optStructureSize

},

i = Complement[First /@ {opts},

First /@ Options[FillData]];

If[Length[i] != 0,

Message[FillData::badopt, #]& /@ i;

Return[$Failed]

];

optMaxIterations = MaxIterations /. {opts} /. Options[FillData];

optMethod = Method /. {opts} /. Options[FillData];

optMissingIs = MissingIs /. {opts} /. Options[FillData];

optStructureSize = StructureSize /. {opts} /. Options[FillData];

Visualisation

- 11 -

workdata = data;

For[iter = 1, iter <= optMaxIterations, iter++,

If[Count[Flatten[workdata], optMissingIs] == 0,

Break[]

];

Switch[optMethod,

ColumnInterpolation,

workdata = columnInterpolate[workdata, optMissingIs,

optStructureSize],

NearestNeighbor,

workdata = DoNearestNeighbor[workdata, optMissingIs],

RowInterpolation,

workdata = rowInterpolate[workdata, optMissingIs,

optStructureSize],

_, Message[FillData::nomethod, optMethod];

Return[$Failed];

];

];

workdata

]

columnInterpolate[data_, missing_, size_] := Transpose[

rowInterpolate[Transpose[data], missing, size]]

(*

* Since this is intended to be an "internal" routine called from

* FillData[], we don’t do argument checking.

*)

DoNearestNeighbor[data_, missing_] := Module[

{

i,j,k, (* dummy variables *)

posns,

row, col,

Visualisation

- 12 -

numrows, numcols,

parts, added, workdata

},

numrows = Length[data];

numcols = Length[First[data]];

(* We will put the filled in terms in added. This keeps a filled

* point from propagating down through the rows as it would if we

* simply changed values in workdata.

*)

added = Table[0, {numrows + 2}, {numcols + 2}];

workdata = SurroundIt[data, missing, 1];

For[row = 1, row <= numrows, row++,

(* Find positions of missing data. Since we have surrounded the

* data with missing values, posns will be {1,numcols + 2} if

* there is no missing data in the row.

*)

posns = Flatten[Position[workdata[[row + 1]], missing]];

If[Length[posns] == 2,

Continue[]

];

posns = Take[posns, {2,-2}];

(* Now we form the 3x3 matrices with the missing values in

* the center and flatten them.

*)

parts = Take[workdata, {row, row + 2}];

parts = Transpose[parts];

parts = Take[parts, {# - 1, # + 1}]& /@ posns;

parts = Flatten /@ parts;

(* Drop the missing values *)

parts = DeleteCases[#, i_ /; i == missing]& /@ parts;

If[Union[parts] === {{}},

Continue[];

];

(* Remove any empty parts from both parts and posns *)

Visualisation

- 13 -

{parts,posns} = Transpose[DeleteCases[Transpose[{parts,posns}],

{i_, j_} /; Length[i] == 0]];

(* The first value left in parts will replace the missing one. *)

i = First /@ parts;

j = Length[i];

For[k = 1, k <= j, k++,

added = ReplacePart[added, i[[k]],

{row + 1, posns[[k]] }];

];

];

If[missing != 0,

posns = Position[workdata, missing];

workdata = ReplacePart[workdata, 0, posns];

];

workdata = workdata + added;

workdata = Take[workdata, {2,-2}];

workdata = Transpose[Take[Transpose[workdata],{2,-2}]];

workdata//N

]

rowInterpolate[data_, missing_, size_] := Module[

{

i,j,k,

intOrder,

first, last,

numtofill,

posnsMissing, posnsFilled,

row, numrows, numcols,

numToInterpolate, skipFills,

tofill,

workdata, workrow

},

numrows = Length[data];

Visualisation

- 14 -

numcols = Length[First[data]];

workdata = data;

For[row = 1, row <= numrows, row++,

workrow = workdata[[row]];

posnsMissing = Flatten[Position[workrow, missing]];

If[Length[posnsMissing] == 0 || Length[posnsMissing] == numcols,

Continue[]

];

posnsFilled = Complement[Table[i, {i,numcols}], posnsMissing];

tofill = Partition[posnsFilled, 2, 1];

(* We only fill when there is a missing value *)

tofill = DeleteCases[tofill, {i_,j_} /; j - i == 1];

If[Length[tofill] == 0,

Continue[]

];

(* Now we assemble all the ranges in tofill which have

* too many missing values. We will delete these from

* the list of posnsMissing, so they will not be filled

* in by the Interpolation. We assume that interpolating

* across these ranges is still reasonable since Interpolation

* is forced to go through every data point.

*)

skipFills = Cases[tofill, {i_, j_} /; j - i > size];

j = Length[skipFills];

For[i = 1, i <= j, i++,

posnsMissing = DeleteCases[posnsMissing,

k_ /; k > First[skipFills[[i]]] &&

k < Last[skipFills[[i]]]];

];

(* Simplest case - interpolate everything and then go on to

* the next row.

*)

first = First[posnsFilled];

last = Last[posnsFilled];

Visualisation

- 15 -

i = Part[workrow, posnsFilled];

i = Transpose[{posnsFilled, i}];

(* If not enough data points for default interpolation,

* we will have to reduce the order.

*)

intOrder = 3;

If[Length[i] <= 3,

intOrder = Length[i] - 1;

];

j = Interpolation[i, InterpolationOrder -> intOrder];

(*

* Drop missing positions outside the range of the

* interpolation.

*)

posnsMissing = DeleteCases[posnsMissing,

i_ /; i < first || i > last];

k = Length[posnsMissing];

(* Construct the interpolated values and put in workrow *)

For[i = 1, i <= k, i++,

workrow[[posnsMissing[[i]]]] = j[posnsMissing[[i]]];

];

workdata[[row]] = workrow;

];

workdata//N

]

(*

* Surround the data by n levels of missing values. The reason for

* setting it up this way and including an input argument ‘n’ is that

* I anticipate adding a WeightedAverage Method to FillData in a future

* release.

*

* Since this is intended to be an "internal" routine called from

* DoNearestNeighbor[], we don’t do argument checking.

*)

Visualisation

- 16 -

SurroundIt[data_, missing_, n_] := Module[

{

i,j,

numrows, numcols,

workdata = data

},

numrows = Length[data];

numcols = Length[First[data]];

j = Table[missing, {numcols}];

For[i = 1, i <= n, i++,

workdata = Insert[workdata,j,{ {1}, {-1} }];

];

j = Table[missing, {numrows + 2*n}];

workdata = Transpose[workdata];

For[i = 1, i <= n, i++,

workdata = Insert[workdata, j, {{1},{-1}}];

];

workdata = Transpose[workdata];

workdata

]

GroundwaterData =

{ {-15.91, 0, -16.30, 0, -16.68},

{0, 0, 0, 0, 0},

{0, 0, 0, 0, 0},

{-14.15, -14.37, 0, 0, 0},

{-13.36, -13.57, 0, 0, -13.96},

{0, -12.56, -12.75, -12.89, -12.98}};

LoadDu[day_?IntegerQ] /; (day >= 1 && day <= 31) := Switch[day,

01, Print["Loading dec01"]; << PHY307F/TOMS/01dec88;,

02, Print["Loading dec02"]; << PHY307F/TOMS/02dec88;,

03, Print["Loading dec03"]; << PHY307F/TOMS/03dec88;,

04, Print["Loading dec04"]; << PHY307F/TOMS/04dec88;,

05, Print["Loading dec05"]; << PHY307F/TOMS/05dec88;,

06, Print["Loading dec06"]; << PHY307F/TOMS/06dec88;,

07, Print["Loading dec07"]; << PHY307F/TOMS/07dec88;,

Visualisation

- 17 -

08, Print["Loading dec08"]; << PHY307F/TOMS/08dec88;,

09, Print["Loading dec09"]; << PHY307F/TOMS/09dec88;,

10, Print["Loading dec10"]; << PHY307F/TOMS/10dec88;,

11, Print["Loading dec11"]; << PHY307F/TOMS/11dec88;,

12, Print["Loading dec12"]; << PHY307F/TOMS/12dec88;,

13, Print["Loading dec13"]; << PHY307F/TOMS/13dec88;,

14, Print["Loading dec14"]; << PHY307F/TOMS/14dec88;,

15, Print["Loading dec15"]; << PHY307F/TOMS/15dec88;,

16, Print["Loading dec16"]; << PHY307F/TOMS/16dec88;,

17, Print["Loading dec17"]; << PHY307F/TOMS/17dec88;,

18, Print["Loading dec18"]; << PHY307F/TOMS/18dec88;,

19, Print["Loading dec19"]; << PHY307F/TOMS/19dec88;,

20, Print["Loading dec20"]; << PHY307F/TOMS/20dec88;,

21, Print["Loading dec21"]; << PHY307F/TOMS/21dec88;,

22, Print["Loading dec22"]; << PHY307F/TOMS/22dec88;,

23, Print["Loading dec23"]; << PHY307F/TOMS/23dec88;,

24, Print["Loading dec24"]; << PHY307F/TOMS/24dec88;,

25, Print["Loading dec25"]; << PHY307F/TOMS/25dec88;,

26, Print["Loading dec26"]; << PHY307F/TOMS/26dec88;,

27, Print["Loading dec27"]; << PHY307F/TOMS/27dec88;,

28, Print["Loading dec28"]; << PHY307F/TOMS/28dec88;,

29, Print["Loading dec29"]; << PHY307F/TOMS/29dec88;,

30, Print["Loading dec30"]; << PHY307F/TOMS/30dec88;,

31, Print["Loading dec31"]; << PHY307F/TOMS/31dec88;

]

LoadDu[___] := Crikey /; Message[LoadDu::noday]

TableDu[day_List, lat_List, long_List] := Module[

{

i, (* dummy *)

duname, (* name of the current loaded du data *)

latc, (* counter for latitudes *)

longc, (* counter for longitudes *)

daytmp, (* construct the result here *)

lattmp, (* place to hold the current latitude data *)

longtmp, (* place to hold the current longitude data *)

s (* for holding input strings *)

},

(*

Visualisation

- 18 -

* Check that the input arguments make sense, warn if

* defined names will be blown away.

*)

If[Length[day] != 3 || day[[1]] > day[[2]],

Print["The day argument is not well formed."];

Return[$Failed]

];

If[Length[lat] != 3 || lat[[1]] > lat[[2]],

Print["The latitude argument is not well formed."];

Return[$Failed]

];

If[Length[long] != 3 || long[[1]] > long[[2]],

Print["The longitude argument is not well formed."];

Return[$Failed]

];

If[Length[Names["dec*"]] >= 1,

Print["CAUTION: this procedure will remove the following"];

Print["names from your session: ", Names["dec*"]];

];

daytmp = {};

For[i = day[[1]], i <= day[[2]], i += day[[3]],

(*

* Construct the name of the the du data to be loaded.

* If the day is less than 10, must explicitly put the

* zero ’0’ in the string.

*)

If[i > 9,

duname = ToExpression[

StringJoin[Characters["dec"], ToString[i]]],

(* else *)

duname = ToExpression[

StringJoin[Characters["dec0"], ToString[i]]]

];

(* Load data for a day, checking result *)

Check[LoadDu[i],

ClearAll["dec* "];

Return[$Failed]

];

Visualisation

- 19 -

(* sanity check *)

If[MatrixQ[duname] == False ||

Length[duname] < lat[[1]] ||

Length[duname] < lat[[2]] ||

Length[duname[[1]]] < long[[1]] ||

Length[duname[[1]]] < long[[2]],

Print["Cannot extract parts."];

ClearAll["dec* "];

Return[$Failed]

];

(*

* Cycle through the latitudes and longitudes, storing

* the desired data in ’longtmp’.

*)

longtmp = {};

For[latc = lat[[1]], latc <= lat[[2]], latc += lat[[3]],

lattmp = {};

For[longc = long[[1]],

longc <= long[[2]], longc += long[[3]],

lattmp = AppendTo[lattmp, duname[[latc, longc]]];

];

longtmp = AppendTo[longtmp, lattmp];

];

ClearAll["dec*"]; (* clear the name *)

daytmp = AppendTo[daytmp, longtmp];

];

(* Finished - return the result *)

daytmp

]

End[]

EndPackage[]

Copyright  1998 David M. Harrison. This is version 1.2, date (m/d/y) 10/15/98.

Visualisation

