
September, 1998

PHY307F/407F - Computational Physics
Background Material for the Exercise - Solving Systems of Linear Equations

David Harrison

This document discusses techniques to solve systems of linear equations. We
write the equations as:

a 11x1 + a 12x2 + . . . + a 1nxn = b 1
a 21x1 + a 22x2 + . . . + a 2nxn = b 2

.

. (1)
an 1x1 + an 2x2 + . . . + annxn = bn

or:

Ax→ = b
→

(2)

Usually A and b
→

are known and we are solving for x→.

This document is organised as follows:

I. Gaussian Elimination: introduces the major concepts and algorithms used to
solve systems of linear equations.

II. LU decomposition: a generalisation of Gaussian elimination.

III. Interchanges: how to deal with possibly catastrophic rounding errors that can
lead to totally wrong answers.

IV. Conditioning: how to quantify the degree to which the equations being solved
are orthogonal with each other.

V. References: for further study.

VI. Code Listing: a listing of the code for the Mathematica package you will be
using in the exercise.

I. GAUSSIAN ELIMINATION

Multiply the first of Equation (1) by a 21/a11 and subtract from the second
equation, replacing the second equation with the result of the subtraction. Simi-
larly multiply the first of Equation (2) by a 31/a11 and subtract from the third equa-
tion, replacing the third equation with the result of this subtraction. Continue for
the fourth, fifth, ... , and n-th equation. The new set of equations will be:

- 2 -

a 11x1+a12x2+ . . . +a1nxxn = b 1

a22
(1)x2+ . . . +a2n

(1)xn = b2
(1)

.

. (3)

an 2
(1) x2+ . . . +ann

(1)xn = bn
(1)

where:

aij
(1) = aij – a 1jai 1/a11, bi

(1)=bi – b 1ai 1/a11, i, j=2, ...,n

Note that we have eliminated a 11 from the second and subsequent equations.

The same procedure can eliminate a 22 from the third and subsequent equa-
tions, and so on until we end up with:








.

.

.
a 11

.

.
a22

(1)
a 12

.

.

.

.

.

ann
(n –1)
.

a2n
(1)

a 1n











xn

.
x2

x1





=





bn

(n –1)
.

b2
(1)

b 1 





(4)

where:

aij
(k) = aij – akjaik/akk, bi

(k)=bi – bkaik/akk, i, j=k +1,...,n

This procedure is called forward reduction . The upper triangular matrix in Equa-
tion (4) will be given the symbol U in the next section.

Note that the last equation of Equation (4) has only one unknown, xn, which
can then be calculated. The next to last equation has two unknowns, xn and xn –1,
but xn has just been found, so we can solve for xn –1. Thus, through repeated back
substitution we end solving for all the values of x→.

These two parts, forward reduction and back substitution together form the
Gaussian elimination method of solving the system of equations.

It will be useful later to write down these two steps in "pseudo code", which is
a sort of shorthand for the way the method would be coded in a procedural language
such as C or FORTRAN.

Forward Reduction

For k = 1,...,n-1
For i = k+1,...,n

l(i,k) = a(i,k)/a(k,k)
For j = k+1,...,n

- 3 -

a(i,j) = a(i,j) - l(i,k)a(k,j)
b(i) = b(i) - l(i,k)b(k)

Back Substitution

For k = n,n-1,...,1
x(k) = b(k)
For j = k+1,...,n

x(k) = x(k) - a(k,j)x(j)
x(k) = x(k) / a(k,k)

If you read the above carefully, you will see that we are overwriting the a matrix
and the b vector as we proceed.

II. LU DECOMPOSITION

It is fairly trivial to show that the original matrix A of Equation (1) can be
written as:

A = LU (5)

where U is the upper triangular matrix defined by Equation (4) and L is a unit
lower triangular matrix whose diagonal elements are all 1 and whose subdiagonal
elements are all the l(i,k) elements defined in the pseudo code for forward reduc-
tion.

Any good computer mathematics library will include routines to carry out this
LU decomposition , carefully optimised for speed and accuracy.

We now do some simple matrix algebra:

A x→ = b
→

LU x→ = b
→

L–1LU x→ = L–1b
→

U x→ = L–1 b
→

We shall set the last of the equations equal to a new vector z→. Then:

L–1b
→

= z→

Lz→= b
→

U x→ = z→

Thus, we can solve the original system of equation in three steps:

1. Factor A = LU.

- 4 -

2. Solve Lz→= b
→

for z→.

3. Solve Ux→ = z→for x→.

This method doesn’t offer large advantages over straight Gaussian elimina-
tion. It eliminates the need to form the bi

k terms needed in Gaussian elimination,
but requires us to first solve for z→and then for x→. The fact that good routines to do
the LU factorisation exist in all good math libraries can be useful. In addition, for
ill-conditioned systems of equations LU decomposition can be more stable. Finally,
LU decomposition forms the basis for some computational variations on the elimi-
nation process.

LU decomposition is also useful for calculating the determinant since:

Det [A] = Det [LU] = Det [L] * Det [U]

and the determinant of L is one. Thus the determinant of A equals the determinant
of U; this calculation is trivial:

Det [U] = u 11u 22
. . . unn

III. INTERCHANGES

When we solve a system of linear equations using either Gaussian elimination
or LU decomposition, we must calculate l(i,k) = a(i,k)/a(k,k) terms. Of
course, this is possible only if a(k,k) is non-zero. If we find an a(k,k) that is
zero we must search for an m-th equation (m>k) for which a(m,m) is not zero. Then
we interchange equations k and m, and continue with forward reduction. If no such
equation m exists the system of equations is singular and can not be solved.

Interchanges can be necessary even if none of the diagonal terms of the A
matrix are zero. We shall illustrate with a very simple set of equations:



 2
–10–5

1
1






x2

x1




= 
0
1

 (6)

The exact solution is:

x1 = –0.4999975 . . . , x2 = 0.999995 . . .

Now imagine that we have a decimal computer that stores floating point num-
bers as (a,b,c,d,e) where the value being stored is:

0.abcd×10e

The multiplier is:

- 5 -

l(2,1) ≡ l21 = –0.2×101/0.1×10–4 = –0.2×106

The new a22 is:

a22
(1) = 0.1×101–(–0.2×106)(0.1×101) = 0.1×101+0.2×106 = 0.2×106

Note that small rounding error in the above calculation.

The new b2 is:

b2
(1) = –(0.2×106)(0.1×101) = 0.2×106

This calculation is exact.

Now we calculate the answer:

x2 = b2
(1)/a22

(1) = 0.2×106/0.2×106 = 0.1×101 = 1
x1=(b1–a12x2)/a11 = (0.1×101–0.1×101)/–0.1×10–4 = 0

The value for x2 is reasonable, but the value for x1 is ridiculous.

Why did this happen? The problem is that the multiplier l21 is too large,
which led the the rounding error in the calculation of a22

(1). This in turn arose
because a11 is small compared to a21 . In fact, you can verify that solving:



–10–5

2
1
1





x2

x1




= 
1
0


on this same hypothetical four digit computer gives:

x2 = 0.1, x1 = –0.5

which agrees very well with the exact solution.

Thus, in the forward reduction step, we must implement a partial pivoting
algorithm so that at each step of the reduction the value of akk that is being reduced
is numerically larger than any of the amk (m>k). The row m with the largest numeri-
cal value of amk is interchanged with row k . Also elements bk and bm are inter-
changed in b

→
.

There is yet one more subtlety. Consider



 2
10

1
–106






x2

x1




=


 0
–106




(7)

According to our partial pivoting strategy, no interchanges are called for. However
Equation (7) is identical to Equation (6) except the first equation has been multi-
plied by –106 . Thus our hypothetical four digit computer will give exactly the same
ridiculous solution to Equation (7) as to Equation (6).

- 6 -

This difficulty is called equilibration or balancing of the matrix, and arises
because the matrix in Equation (7) is no properly scaled. Unfortunately, there is no
known general procedure to properly scale a set of equations, although often careful
inspection will indicate that scaling is necessary.

Although the make-believe computer we have been using is not very realistic,
the same catastrophic rounding errors can arise with any computer since all such
machines use a finite number of digits to store floating point numbers.

IV. CONDITIONING

Imagine a system of two equations in two unknowns:

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

For each of these equations you will make plots of x2 versus x1 . The solution of the
set of equations is the point where these lines intersect.

If the two lines are parallel, then the equations can not be solved.

If the two lines are nearly but not quite parallel, we say they are ill condi-
tioned . A good measure of conditioning is:

V =  det(A)  /(α1α2
. . . αn) (8)

where:

αi ≡ √ai1
2 + ai2

2 + . . . + ain
2

and arow column is an element of the A matrix.

If V = 1 the equations are perfectly conditioned; if V = 0 the A matrix is singu-
lar and the equations can not be solved. V is the volume of the n-dimensional unit
parallelepiped circumscribed by the lines defined the the rows of the A matrix.

V. REFERENCES

• Gene H. Golub and James M. Ortega, Scientific Computing and Differen-
tial Equations (Academic Press, 1992), § 4.2 - 4.4.

• William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling, Numerical Recipes: The Art of Scientific Computing or
Numerical Recipes in C: The Art of Scientific Computing (Cambridge
Univ. Press), § 2.0 - 2.3.

- 7 -

VI. CODE LISTING

In this section we list the code for the Mathematica package you will be using
in the Exercise. Not only is it usually a good idea to open up the "black box" of a
computer package to get an idea of how it works, but for beginners looking at code
written by more expert programmers is often valuable in learning how to write good
programs yourself.

(* @(#)Exer.m 1.9 U of T Physics 09/12/96 *)

(*

* Modified by David Harrison. See LinearAlgebra/GaussianElimination

* as shipped on the Mathematica tapes for the history of the original

* version. This version is identical except for the addition of

* SimpleLUFactor, and a change to the internal lufactor[] to

* disable pivoting.

*)

(* :Copyright: Copyright 1990, Wolfram Research, Inc.

Permission is hereby granted to modify and/or make copies of

this file for any purpose other than direct profit, or as part

of a commercial product, provided this copyright notice is left

intact. Sale, other than for the cost of media, is prohibited.

Permission is hereby granted to reproduce part or all of

this file, provided that the source is acknowledged.

*)

BeginPackage["PHY307F‘Exer‘",

"EDA‘Master‘" (* For Exercise 3 *)

]

Unprotect[LUFactor, LUSolve, LU, SimpleLUFactor];

SimpleLUFactor::usage =

"SimpleLUFactor[mat] gives the LU decomposition just as LUFactor[mat],

except that partial pivoting is disabled. SimpleLUFactor[mat,

WorkingPrecision -> n] limits the working precision to n digits."

Options[SimpleLUFactor] = {WorkingPrecision -> $MachinePrecision}

LUFactor::usage =

- 8 -

"LUFactor[mat] gives the LU decomposition along with a pivot list of the

matrix mat. The calculation is done using Gaussian elimination with

partial pivoting. The result is returned as a data object with a head of

LU. LUFactor[] may be used in the context of ComputerArithmetic.m or

IntervalArithmetic.m. LUFactor[mat, WorkingPrecision -> n] limits the

working precision to n digits."

Options[LUFactor] = {WorkingPrecision -> $MachinePrecision}

LUSolve::usage =

"LUSolve[lu, b] solves the linear system represented by lu (the matrix) and

right-hand side b. The \"matrix\" lu must be the data object with a head of

LU resulting from LUFactor[mat] and b must be an ordinary list of the

appropriate size. LUSolve[] may be used in the context of

ComputerArithmetic.m or IntervalArithmetic.m. LUSolve[lu, b,

WorkingPrecision -> n] limits the working precision to n digits."

Options[LUSolve] = {WorkingPrecision -> $MachinePrecision}

LU::usage =

"LU[a, pivots] is the data object returned by LUFactor[] and is to be given

as the first argument to LUSolve[]. The matrix a represents the lower and

upper triangular matrices in the LU decomposition, and pivots is a record

of the pivots used in the decomposition."

Begin["Private‘"]

SimpleLUFactor[aa_?MatrixQ,opts___] :=

Module[{ans, prec = WorkingPrecision /. {opts} /. Options[SimpleLUFactor] },

ans /; Head[ans = lufactor[aa,pivot = False,prec]] == LU] /;

(Length[aa] == Length[aa[[1]]])

LUFactor[aa_?MatrixQ,opts___] :=

Module[{ans, prec = WorkingPrecision /. {opts} /. Options[SimpleLUFactor] },

ans /; Head[ans = lufactor[aa,pivot = True,prec]] == LU] /;

(Length[aa] == Length[aa[[1]]])

LUSolve[ap_LU, bb_List,opts___] :=

Module[{ans, prec = WorkingPrecision /. {opts} /. Options[SimpleLUFactor]},

ans /; VectorQ[ans = lusolve[ap, bb, prec]]] /;

- 9 -

(Length[ap[[1]]] == Length[bb])

divide[a_, b_] :=

If[FreeQ[{a, b}, NumericalMath‘ComputerArithmetic‘ComputerNumber],

a/b, NumericalMath‘ComputerArithmetic‘IdealDivide[a, b]];

lufactor[aa_, dopivot_,prec_] :=

Module[{a = aa, pivot, ii, iip, i, ip, j, k, mpiv, m, n=Length[aa], tmp},

pivot = Table[i, {i, n}];

For[ii=1, ii<=n, ii++, (* for each row do ... *)

(* find a pivot *)

mpiv = SetPrecision[Abs[a[[pivot[[ii]], ii]]],prec];

k = ii;

For[i=ii+1, i<=n, i++,

tmp = SetPrecision[Abs[a[[pivot[[i]], ii]]],prec];

If[dopivot == True,

If[tmp > mpiv, mpiv = tmp; k = i]

];

];

tmp = pivot[[ii]];

pivot[[ii]] = iip = pivot[[k]];

pivot[[k]] = tmp;

mpiv = SetPrecision[a[[iip, ii]],prec];

(*

* calculate and store the multipliers and reduce the

* other elements.

*)

For[i=ii+1, i<=n, i++,

ip = pivot[[i]];

m = a[[ip, ii]] = SetPrecision[divide[a[[ip, ii]], mpiv],prec];

For[j=ii+1, j<=n, j++, a[[ip, j]] -= SetPrecision[m*a[[iip, j]],prec]]

];

];

LU[a, pivot]

]

lusolve[ap_, bb_, prec_] :=

Module[{a, b = bb, pivot, ii, i, m, n, tmp},

a = SetPrecision[ap[[1]],prec];

pivot = SetPrecision[ap[[2]],prec];

n = Length[a];

- 10 -

(* forward elimination *)

For[ii=1, ii<=n, ii++, (* for each row do ... *)

For[i=ii+1, i<=n, i++,

b[[pivot[[i]]]] -= (SetPrecision[a[[pivot[[i]], ii]],prec]

* SetPrecision[b[[pivot[[ii]]]],prec])

];

];

(* back substitution *)

Clear[i];

For[ii=n, ii>0, ii--,

tmp = Sum[(SetPrecision[a[[pivot[[ii]], i]],prec] *

SetPrecision[b[[pivot[[i]]]],prec]), {i, ii+1, n}];

tmp = SetPrecision[b[[pivot[[ii]]]],prec] - SetPrecision[tmp,prec];

b[[pivot[[ii]]]] = divide[tmp, a[[pivot[[ii]], ii]]]

];

tmp = Table[,{n}];

For[ii=1, ii<=n, ii++, tmp[[ii]] = SetPrecision[b[[pivot[[ii]]]],prec]];

tmp

]

End[] (* "LinearAlgebra‘GaussianElimination‘Private‘" *)

Protect[LUFactor, LUSolve, LU, SimpleLUFactor];

EndPackage[] (* "LinearAlgebra‘GaussianElimination‘" *)

This document is Copyright  David M. Harrison, 1998. This is version 1.8, date (m/d/y/) 09/28/98.

