
September, 1998

PHY307F/407F - Computational Physics
Course Notes

David Harrison

I. INTRODUCTION

Traditionally physics has been divided into two main branches: theoretical and
experimental . Over time, the interaction between these two branches has

become well-defined and the natural tension between theoreticians ("I don’t roll
around on the floor with a screwdriver in my teeth!") and experimentalists ("I don’t
spend all my time pushing a pencil around on a piece of paper!") has had a largely
positive influence on the advancement of physics.

The effect of computers on the way physics is carried out has been sufficiently
profound that some have proposed that the traditional bifurcation of the field into
theory and experiment has now trifurcated into theoretical, experimental, and
computational physics. Perhaps extreme, the suggestion nonetheless points out
the huge impact this technology is having on the field. Pictorially, a trifurcated
physics is:

Theory Experiment

Computation

In this course we give an overview of some areas of computation of particular
importance to physics. The approach is broad rather than deep. In all cases, the
computation is closely tied to real physics problems. The terminology of the course
closely follows that of our undergraduate laboratories. Also in common with those
labs, there is an emphasis on error analysis throughout.

A recurring theme is that although in principle the computers don’t do any-
thing that we can’t do by hand, in practice the technology is sufficiently fast the it
feels to us that we are doing something qualitatively different from what would be
possible without the computers. This in turns leads to differences in the kind of
questions that we ask about a physical system, and the sorts of approaches that we
take in determining the answers to our questions.

- 2 -

In common with many of our laboratories, we begin with an Exercise.1 The
purpose of the exercise is to introduce you to the environment of the course in a set-
ting with little conceptual difficulty. The exercise will consist of an investigation of
techniques to solve linear equations.

The Exercise is followed by five experiments:

1. Fitting - Least squares algorithms; evaluation of the quality of a fit; polyno-
mial fits to Pearson’s K-Ar data with York’s weights; non-linear fitting to
nuclear spectra.

This is a too brief survey of techniques for modelling real-world experimental
data. A major emphasis is on the correct handling of data which has associ-
ated experimental errors, a case which is often ignored outside of physics
departments. Measuring the quality of the fit and choosing between different
models for a given set of data are also studied.

2. Physical Pendulum - solving the differential equations of the physical pendu-
lum in a Hamiltonian formulation; Runge-Kutta and symplectic algorithms.

The simple pendulum, where we limit the maximum amplitude θ so that
sin(θ) ∼∼ θ, has a solution which is, of course, simple harmonic motion. Solving
the pendulum without the assumption, however, to determine the angle as a
function of time is not amenable to analytic approaches. In this experiment
we will investigate techniques to numerically integrate the equations of
motion to produce ‘time series’ of the position and momentum for times
t = t 0 + ∆t, where ∆t is the ‘timestep’ of the time series. The answers will all
be slightly incorrect, and a crucial aspect of the experiment will be to deter-
mine the errors associated with the different algorithms used to integrate the
equations.

3. Heat Equation - solving the one dimensional heat equation; explicit and
implicit methods and the Crank-Nicholson algorithm.

The pendulum of the previous experiment involved solving ordinary differen-
tial equations. Here we investigate techniques for partial differential equa-
tions, concentrating on the heat equation. Schrödinger’s equation is also a
parabolic equation similar in some ways to the heat equation. The techniques
studied here are also used for the wave equation and Poisson’s equation. For

1. The Hoop experiment in the I Year Laboratory is such an exercise. The II Year Laboratory
begins with a series of exercises before the actual experiments begin.

- 3 -

many real-world sets of initial conditions and/or boundary conditions, analytic
solutions are difficult or impossible to achieve for these equations. We will
discover that computational methods of solution must pay attention to the sta-
bility of the algorithm: many reasonable-looking algorithms just don’t work.

4. Simulation and Statistics - Monte Carlo modelling of high energy physics
data.

Data taken from the Stanford Linear Accelerator Center is used to study the
decay of the K*(1780)0 meson from about 100,000 possible events. The theory
provides only the probability of a given type of event occurring. Thus we will
be using a Monte Carlo process to ‘generate’ simulated events that have the
characteristics predicted by our theoretical model, and will compare the distri-
butions of these generated events to the experimental data.

5. Visualisation - studying ozone data taken from the Total Ozone Measurement
Spectrometer (TOMS) aboard the Nimbus 7 spacecraft.

A day’s ozone data taken by TOMS consists of a grid of 180 by 288 data points.
Here we will explore techniques to discover patterns in the data by looking at
it on a computer screen. Crucial will be the use of color to display values for
the data. The data itself has missing sections and discontinuities, and we will
investigate techniques of dealing with these.

Most practicing physicists who use computers in their everyday work (which is
now most physicists) learned how to use the tool ‘by the seat of their pants’. In
many ways this has had a positive effect on the way we use this technology. How-
ever some of the downsides include:

• occasional published wrong results of calculations and/or data collection due to
poor choice of algorithm or insufficient testing.

• a fair number of wasted cpu cycles because of a poor understanding of issues
of efficiency.

• a large amount of wasted manpower because of little thought about issues of
portability and maintainability of programs.

Thus, although this is definitely not a course in Computer Science, we will be
emphasising some aspects of that discipline as it applies to the three problems just
listed.

Our programming environment is based on Mathematica although occasion-
ally we use C interacting with Mathematica when Mathematica itself is too slow.
By the end of the course you will be fairly fluent in Mathematica . Although it has
its own worldview, as do all computer languages, it is sufficiently rich that one can

- 4 -

do a nearly line-by-line translation of large parts of a typical program written in C,
FORTRAN, Pascal, etc. into Mathematica .2 Strengths of the language are its sym-
bolic algebra and graphics capabilities, and the fact that it is interpreted so a sepa-
rate compile step is not necessary. This choice also neatly sidesteps the C vs. FOR-
TRAN war that continues to rage throughout physics.

II. PROGRAMMING STYLE

As mentioned in the introduction, two of the issues in computer programming
are maintainability and portability. Maintainability refers to whether the code

can be easily modified, updated, or extended at some future time, perhaps by some-
one other than the person who wrote the original code. Portability refers to
whether the code can be easily moved to a different computer platform; this is a big
issue in C and FORTRAN where flavours of the language and operating system
dependencies abound.

Both of these issues are addressed by good programming style.

Here is an illustration. Consider the two small Mathematica functions on the
next page that solve the quadratic equation ax 2 + bx + c = 0. They both return
identical results, which are two answers, and each answer has a real and imaginary
part.3 Suppose that some value of b 2 >> 4ac is causing a Catastrophic Cancellation
so the routines are returning wrong results. Which of the two would you prefer to
modify and why?

A too brief list of some elements of good style follows:

1. Comment everything. When writing a piece of code, it is ‘obvious’ to you what
is going on. It will not be obvious to someone else, or even to you two weeks
later.

2. Choose variable names that are descriptive. For Mathematica programs, hav-
ing them begin with a lower-case letter insures that they will not collide with
built-in names.

2. In fact, if you are already fluent in a programming language I can perhaps identify it by looking
at your first Mathematica program. In §V of these Notes there are some further remarks on this
issue.

3. The built-in Mathematica procedure Solve[] also solves this equation. In addition, Sqrt[]
can handle negative arguments automatically, although extra code would be needed to sort the
answers into real and imaginary parts in the form of the example.

- 5 -

mySolve[a_, b_, c_] := Module[{ans1, ans2, disc},
disc = bˆ2 - 4*a*c;
If[disc >= 0,

ans1 = { (-b + Sqrt[disc])/(2a), 0 };
ans2 = { (-b - Sqrt[disc])/(2a), 0 },

(* else *)
ans1 = { -b/(2a), Sqrt[-disc]/(2a) };
ans2 = { -b/(2a), -Sqrt[-disc]/(2a) };

];
{ans1, ans2}

]

mySolve[a_, b_, c_] := Module[{q, p},
Goto[m1];
Label[m0];
Goto[m2];
Label[m1];

q = { (-b + Sqrt[bˆ2 - 4 a c])/(2a), 0 };
p = { (-b - Sqrt[bˆ2 - 4 a c])/(2a), 0 };
If[bˆ2 - 4*a*c >= 0,

Goto[m3],
Goto[m0]

];
Label[m2];

q = { -b/(2a), Sqrt[-(bˆ2 - 4 a c)]/(2a) };
p = { -b/(2a), -Sqrt[-(bˆ2 - 4 a c)]/(2a) };
Goto[m3];

Label[m3];
{q, p}

]

- 6 -

3. Clear and readable code is better than tricky algorithms or implementations.
If performance issues require tricks for greater speed, they can be put in later.
First get it right, then make it fast if necessary. The programmer’s rule is:
KISS.4

4. Good languages have a number of control structures; in Mathematica these
include If, For, Which, While, etc. Use the construct that naturally
matches the operation being performed instead of bending another one to an
unsuitable task. In general, the Goto is bad for you.

5. Hide the inner workings of functions from the outside world. Then, if neces-
sary they can be re-written with no side effects.

6. If the same lines of code are being used throughout, put them in a separate
function.

7. Some languages, such as Mathematica and C, allow the unrestricted use of
‘white space’ (spaces, tabs, newlines). Use the indentation to make the logical
flow of the program clear. Always use the same style of indentation.

8. Typically control structures get nested, as in:

If[test1 ,
operation1 ;
If[test2 ,

operation2 ;
If[test3 ,

operation3 ;
...

];
];

];

When the nesting gets deep, it is time to put some parts into separate func-
tions.

9. Use many small functions instead of one great big one. This may not be an
issue for the relatively small programs you will be writing in this course.
Also, although Mathematica is controlled by its vendor, Wolfram Research,
and so has only a single standard, compiler writers for C, FORTRAN, and

4. Keep It Simple Stupid.

- 7 -

Pascal can’t resist adding extensions to the language which are different for
every version and vendor. Try to avoid using them, but if you must, isolate
them into well-documented functions. Similarly, avoid or isolate operating
system dependencies. Note that this advice depends on recognising the exten-
sions and operating system dependencies in the programming environment,
which is often the hard part for beginners.

10. Comment everything. When writing a piece of code, it is ‘obvious’ to you what
is going on. It will not be obvious to someone else, or even to you two weeks
later.

Mechanics of writing a program

When beginning to write a program, there is a tendency to pull up an editor and start banging
away. For most people this is a bad idea. Instead the first draft should be done on a piece of
paper. At the least, on the paper should be all internal variable names and blocks of ‘pseudo-
code’. It can include a flow chart and/or actual complete code including all the semi-colons,
commas, etc.

III. REFERENCES

Here is an annotated list of some books discussing the material of this course.
In addition you will wish to acquire a copy of the locally written document

Mathematica & UPSCALE; it is a guide to local features of our version of
Mathematica ; it also includes a bibliography of books on the Mathematica program-
ming language.

• Philip R. Bevington, Data reduction and error analysis for the physical
sciences (McGraw-Hill, 1969).

A classic text, one of the first on numerical methods. Many people still reach
for this one first when confronted with a new problem.

• Brice Carnahan, H.A. Luther and James O. Wilkes, Applied Numerical
Methods (Wiley, 1969).

Despite its reliance on FORTRAN and showing its age through things like
flowcharts, this book discusses a wide range of topics in numerical methods at
about the level of this course. Further, it ties those discussions to the solution
of ‘real world’ problems in physics and engineering.

• Gene H. Golub and James M. Ortega, Scientific Computing and Differen-
tial Equations (Academic, 1992, ISBN: 0-12-289255).

Seriously considered as a textbook for this course. It is the text for the

- 8 -

Engineering course CSC383S - Numerical Methods .

• W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical
Recipes in C (Cambridge, 1988, ISBN: 0-521-35465-X).
W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical
Recipes (Cambridge Univ., 1986, ISBN 0-521-30811-9).

A goldmine of techniques and discussion. The first listed version is in C, obvi-
ously, the second in FORTRAN and Pascal. Another candidate for the text-
book in this course.

• Samuel S.M. Wong, Computational Methods in Physics and Engineering
(Prentice-Hall, 1992, ISBN: 0-13-155953-2).

Professor Wong, of this Department, has been involved in numerical methods
for a long time; this book presents his accumulated knowledge at a level close
to this course. He also was active in the establishment of the UPSCALE facil-
ity in this Department.

IV. MARKING SCHEME

The Exercise will be marked Pass/Incomplete, and must be passed before work
on the experiments may begin. Each experiment will be marked out of 18

points, so the five experiments will account for 90% of your mark in the course. The
remaining 10% will be determined by an oral examination at the end of the course.

Although alternatives are available, past experience has shown that the most
comfortable and efficient environment for you to do your work is the Mathematica
Notebook. This can be invoked either from the main menu within the UPSCALE
menu-system or from a shell prompt by typing mathematica. UPSCALE has a
growing number of pre-prepared notebooks available. One advantage of invoking
from within the menu system is that you will be prompted for the Notebook you
wish to load, without having to know file or directory names.

The Exercise and Experiments are written as Notebooks, and you will be able
to access them both on-line and as hardcopy. They serve the same function as the
"Guide Sheets" of our more traditional laboratories, and typically contain introduc-
tory text, references, sample Mathematica commands, and code listings.

Once you have loaded the notebook for the Exercise or one of the Experiments,
you can save it in your own areas. Thus you can:

1. Substitute for our text and explanation with your own description of what you
did, what happened, and what you think it means. Thus, the notebook will
serve the same function as a lab book in our traditional labs.

- 9 -

2. Include sample Mathematica commands and their output. When you are
asked to write a Mathematica procedure, the code should be included in the
notebook. Typically, the text that you write explaining what you are doing,
what happens and why, "flows" around the Mathematica input and output
cells.

When the exercise or experiment is complete, we will copy your notebook into our
own areas for evaluation.

The evaluation of your work will be in part based on your descriptions of your
work and in part on the code that you write. As a rough guideline, the table shows
how the marks for each part of an experiment will be assessed.

Components of mark

What Description Percent

Is the experiment completely done and understood? Are
the conclusions correct and meaningful? Are all questions
answered? Are there suggestions for further exploration?

Content 35%

Are the materials easy to read and understand?Clarity 7%

Do the written materials tell me everything that you did?Completeness 8%

Do your programs work in all cases, including boundary
cases? Do they handle bad data gracefully? Are they effi-
cient?

Correctness 30%

Good variable names? Clear and obvious use of variables?
Clear and logical structure? Indentation reflects the logical
structure of the program? Can be easily understood and
modified? Well commented?

Style 20%

V. THE MATHEMATICA PROGRAMMING ENVIRONMENT

Between the references, Guide Sheets, and the Mathematica & UPSCALE doc-
ument, most of the information required to get up to speed with Mathematica

is provided. A few exceptions and further discussion occurs in this section.

V.A Debugging

Traditionally the first program to be written is one that prints hello world on
the screen and exits. At its simplest, you may type:5

- 10 -

In[1]:= HelloWorld[] := Print["hello world"]

and then you can type:

In[2]:= HelloWorld[]
hello world

In[3]:=

Suppose that we want to add an argument to our definition that governs the num-
ber of times it does the print. We can add the following definition:

In[3]:= HelloWorld[num_Integer] := Module[{i},
For[i = 1, i <= num, i++,

Printf["hello world"]
]

]

This second definition is executed only if a single integer argument is given to the
call.6 However, probably because I coded too much C as a child, I have inadver-
tently typed Printf instead of Print so the second form produces no output:

In[4]:= HelloWorld[]
hello world

In[5]:= HelloWorld[3]

In[6]:=

Although it is easy for you to see the mistake after I have pointed it out, usually
such errors are very difficult to spot, especially for their perpetrator. In this case,
unless you can spot the mistake you may not be sure whether the second definition
of HelloWorld is even being executed, or perhaps there is something wrong with
the For specification or

One of the disadvantages of Mathematica and most other interpreted lan-
guages is that in C, FORTRAN, or Pascal the above kind of error would be caught
by the compiler. Mathematica catches many errors at run-time and attempts to
provide a useful error message; it didn’t catch this one and actually doesn’t think it
is an error at all. In addition, powerful symbolic debuggers are increasingly

5. The In[1]:= is the prompt from Mathematica ; you would not type that in.
6. This ability to overload the name space is one of Mathematica ’s strengths. Object-oriented

compiled languages like C++ also have this ability.

- 11 -

available for the compiled languages which allow one to step through the code line
by line; Mathematica has no such tool. Thus, it is common to sprinkle Print state-
ments in a misbehaving Mathematica program.

Mathematica does provide a Trace command that can be of great use in
debugging. Here is some sample output from our misbehaving HelloWorld pro-
gram:

In[6]:= Trace[HelloWorld[3]]

Out[6]= {HelloWorld[3], Module[{i$},

> For[i$ = 1, i$ <= 3, i$++, Printf[hello world]]],

> For[i$2 = 1, i$2 <= 3, i$2++, Printf[hello world]], {i$2 = 1, 1},

> {{i$2, 1}, 1 <= 3, True}, {i$2++, {i$2, 1}, {i$2 = 2, 2}, 1},

> {{i$2, 2}, 2 <= 3, True}, {i$2++, {i$2, 2}, {i$2 = 3, 3}, 2},

> {{i$2, 3}, 3 <= 3, True}, {i$2++, {i$2, 3}, {i$2 = 4, 4}, 3},

> {{i$2, 4}, 4 <= 3, False}, Null}

In[7]:=

Examination shows that the procedure is being executed, that the For loop seems
to be running correctly, and we eliminate possibilities until we are led to the offend-
ing statement. After correcting the mistake, we can run:

In[7]:= HelloWorld[3]
hello world
hello world
hello world

In[8]:=

The Trace command has many options that allow a large amount of control over
what and when you trace. Learning at least some of the simpler of these options is
probably worth your time; see the Mathematica book, §2.5.10, for more details.

V.B Function Arguments

One of the issues in evaluating various computing languages is whether their
functions receive their arguments by value or by address. The distinction can per-
haps be made clear by the following pseudo-code:

- 12 -

...
x = 3
y = func[x]
...
func[x]

x = x + 4
return x

...

We have a block of code that assigns the value 3 to the variable x and calls the func-
tion func with x as the argument. The function adds 4 to its argument and returns
the result, which in this case is assigned to the variable y. In a language like C all
the function func knows is the value of its argument; thus after the call to the func-
tion the value of x as seen by the main part of the program is unchanged. In a lan-
guage like FORTRAN, the function actually gets the address where the variable x
is stored; thus after the call the value of x is changed.

Passing arguments by value is usually considered to be superior because it
automatically insures that the inner workings of the function are hidden from the
rest of the program. This means that the function can be re-written or modified
without fear that some other part of the code will be broken by the change. Unfor-
tunately, for C arguments that are an array or string are passed by address, while
other arguments are passed by value. I tend to consider this a wart in C, but one
that all C programmers including me use regularly. The code in Numerical Reci-
pes in C uses this relentlessly to change the values of an input argument.

In this sense Mathematica is much more ‘pure’; it won’t even allow you to
assign a value to an input argument. For example:

In[1]:= f[x_] := (x = N[x]; Sqrt[x])

In[2]:= f[2]

Set::setraw: Cannot assign to raw object 2.

Out[2]= Sqrt[2]

If you want to use pattern names as local variables in the same way as procedure
parameters are used in programming languages like C and Pascal , for example, you
can do it by using an initialized local variable:

In[3]:= g[x_] := Module[{xx = x}, xx = N[xx]; Sqrt[xx]]

- 13 -

In[4]:= g[2]

Out[4]= 1.41421

This means that although Mathematica is very flexible in the sense that you can
program it procedurally or functionally, can overload the name space, etc., doing a
translation of the data structures and calling conventions of many FORTRAN or C
programs requires a redesign.

V.C Portability

We should make a few remarks about portability and Mathematica . As
already mentioned, since Mathematica is controlled by its vendor, Wolfram
Research, there is only a single standard for the language; this differentiates it
from C and FORTRAN, where many flavours exist. Wolfram also works hard to
insure that the release of a new version of the software doesn’t break existing appli-
cations, although they are not perfect in this regard. Nonetheless, since Mathema-
tica runs on many different computing platforms it is possible to write a program
that will work on one machine but not on another. For example, to load the Dirac-
Delta package you type:

In[1]:= << NumericalMath`DiracDelta`

On a UNIX platform, one could also load NumericalMath/DiracDelta.m since
the file exists in the NumericalMath directory and is named DiracDelta.m . This
would not work in a DOS environment since the directory delimiter is a backslash
\, not the forward slash, and on other hardware the filename extension may or not
be .m. So Wolfram provides the grave ` as a generic directory delimiter and
filename extension which is interpreted correctly on all platforms.

V.D Functional and Procedural Programming

Finally, above the distinction between functional and procedural program-
ming was mentioned. In order to illustrate the distinction, the following program
calculates the mean of a list of numbers in a procedural style:

MeanP1[list_] := Module[{i, length, sum},
length = Length[list];
sum = 0;
For[i = 1, i <= length, i++,

sum = sum + list[[i]]
];
sum/length

]

- 14 -

The code in this procedure looks almost identical with the way it would be coded in
a traditional compiled language like C or FORTRAN. The same result can be writ-
ten in a functional style:

MeanF1[list_] := Apply[Plus, list] / Length[list]

Although efficiency is not a major issue in this course, Mathematica is much more
efficient executing functional code: in this example for a 10,000 point data set
MeanP1[] took 3.1 seconds to execute while MeanF1[] took 0.56 seconds. If you
are familiar with the Apply[] function, which is a Mathematica built-in, the func-
tional form is probably more readable than the procedural one; it is certainly
shorter.

The two versions produce identical results, including nonsense results if they
are not given ‘sensible’ input. Continuing to explore the distinction between these
two styles of programming, we modify MeanP1[] so that it checks to make sure it
receives a list of numbers and the list is not empty.

MeanP2[list_] := Module[{i, length, sum},
If[!VectorQ[list],

Return[$Failed]
];
length = Length[list];
If[length == 0,

Return[$Failed]
];
sum = 0;
For[i = 1, i <= length, i++,

sum = sum + list[[i]]
];
sum/length

]

Making the same checks functionally:

MeanF2[list_] := Apply[Plus, list] / Length[list] /;
VectorQ[list] && Length[list] > 0

Now, if the procedural version is given a list which is not a vector or has zero length
it returns the symbol $Failed. The functional version will not even be evaluated.

In[1]:= wrongdata = {{1,2},{3,4}};

In[2]:= MeanP2[wrongdata]

- 15 -

Out[2]= $Failed

In[3]:= MeanF2[wrongdata]

Out[3]= MeanF2[wrongdata]

Since procedural languages like C and FORTRAN dominate Physics as of this
writing, it is a difficult question as to whether you will benefit more by program-
ming Mathematica procedurally and thereby improve your ability to think about
problems that way, or rather program and think about computation functionally.
The whole question of procedural versus functional programming tends to be a reli-
gious issue in some circles.

Original version by David Harrison, August 1993
This rev: 1.15, date (m/d/y): 09/10/98

Copyright David Harrison, 1993, 1994, 1995, 1996, 1997, 1998

- 16 -

On rounding errors

The following are some details of the U.S. Government Accounting Office Report
GAO/IMTEC-92-96.

The Patriot missile defence unit (battery) uses a 24 bit arithmetic which causes the representa-
tion of real time and velocities to incur roundoff errors; these errors become substantial when
the Patriot battery ran for 8 or more consecutive hours.

As part of the search and targeting procedure, the Patriot radar system computes a "Range Gate"
that is used to track and attack the target. As the calculations of real time and velocities incur
roundoff errors, the range gate shifts by substantial margins, especially after 8 or more hours of
continuous run.

The following data on the effect of extended run time on Patriot operations from Appendix II of
the report would be of interest to numerical analysts everywhere.

Hours Real time Calculated Time Inaccuracy Approx. Shift
(seconds) (seconds) (seconds) in range gate

(meters)
0 0 0 0 0
1 3600 3599.9966 .0034 7
8 28800 28799.9725 .0275 55
20 72000 71999.9313 .0687 137
48 172800 172799.8352 .2472 330
72 259200 259199.7528 .2472 494
100 360000 359999.6667 .3333 687

The air fields and sea ports of Dhahran were protected by six Patriot batteries. Alpha battery
was to protect the Dhahran air base. On February 25, 1991, Alpha battery had been in operation
for over 100 consecutive hours. That’s the day an incoming Scud struck an Army barracks and
killed 28 American soldiers.

On February 26, the next day, the modified software, which compensated for the inaccurate time
calculation, arrived in Dharan.

Clearly the design of the software did not match the way it was used in the field. It is interesting
to muse about whether this error was just a lack of communication, or whether the people who
wrote the software just didn’t think about the possibility of a rounding error.

Information provided by Murli Gupta in a Internet posting of June 10, 1992.

