Review

	Simple harmonic	With damping	Forced, with/without damping
System		Frictionless table	Frictionless table
Equation of motion	$\ddot{x} + \frac{k}{m}x = 0$	$\ddot{\mathbf{x}} + \frac{\mathbf{b}}{\mathbf{m}}\dot{\mathbf{x}} + \frac{\mathbf{k}}{\mathbf{m}}\mathbf{x} = 0$	$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = (F/m)coswt$
Constants	$\omega_0 = \sqrt{\frac{k}{m}}$	$\omega_0 = \sqrt{\frac{k}{m}}; \gamma = \frac{b}{m}$	$\omega_0 = \sqrt{\frac{k}{m}}; \gamma = \frac{b}{m}$
		Critical condition:	
		$\omega_0 = \frac{\gamma}{2}$	
Solution	$x(t) = A \cos \omega_0 t$	$x(t) = A_0 e^{-\gamma t/2} \cos \omega t$ overdamped and critically damped oscillators: no harmonic component	$x(t) = \frac{\frac{F_0}{m}}{\left(\frac{\Phi}{\omega_0^2} - \omega^2\right)^2 + \gamma^2 \omega^2 \dot{\underline{u}}^{1/2}} \cos \omega t$
Frequency	$\omega_0 = \sqrt{\frac{k}{m}}$	$\omega^2 = \omega_0^2 - \frac{\gamma^2}{4}$	w is the frequency of the driving force
		W depends on both: system (k,m) and damping force (b)	
Amplitude	A = constant	$A(t) = A_0 e^{-\gamma t/2}$ It is a function of time; it depends on mass (m) and damping force (b)	$A(\omega) = \frac{\frac{F_0}{m}}{\underbrace{e}^{e}(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2 \underbrace{u^{1/2}}_{f}}$ It is a function of w. It depends on: oscillator (k,m), damping force (b), driving force (F ₀ , w)