Comments

1) Simple vs. physical pendulums

2) Velocity at different points along a spring with mass M

$\frac{\Delta x}{\Delta x} = \frac{x}{\Delta x}$				
s 1				
$\frac{d}{\Delta x} = \frac{d}{\Delta x}$	Ъ	$\frac{1}{2} \frac{d(\Delta x)}{d(x)} = \frac{1}{2} \frac{d(x)}{d(x)}$	Ъ	$\frac{1}{-\mathbf{v}} = \frac{1}{-\mathbf{v}}$
dt s dt l	-	s dt 1 dt	-	s ^{int} 1 ^{end}

Velocity of any intermediate point on the spring (at distance s from the fixed end) is s/l of end-of-the-spring velocity