I. PROBLEM-1
A.

The equation of the hypotenuse is y = —§ +15 when the coordinate system is chosen such
that the origin is at the bottom of the sign on the axis. Using this the moment of inertia
30

is given by I = [r?dm = 0 X:ﬁydx where A is the area of the triangle. The moment of

inertia is given by I = 3 * 1072kgm?.

B.

Use FR = Ia for R = 0.05m and it is found that o = 5rads™2. The angular displacement
at 25 is 0 = 1/2at? = 10rad. The angular velocity at t = 2s is wy = 10rads™!. Since w is
constant after t = 2s the angular displacement between 2s and 4s is 0, — 6 = 20rad. The

total displacement is 30rad. Hence the number of revolutions completed is = 5.

C.

Kinetic energy at t = 2s is 1/2[w3 = 1.5J. The power at t = 1s is P = T7w; = FRw; =
0.75W

II. PROBLEM-2

The effective spring constant k = (4+4)N/m = 8 N/m since the springs are parallel. Let
x be displacement at any time ¢ from the initial position along the plane. Using conservation
of energy we have
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Use w = 1/R% and differentiate Eq(1) with respect to time to obtain the dynamical equa-
tion. We find
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A change of variables 2’ = x— transforms the equation into that of a simple harmonic

oscillator. Hence the solution of Eq(3) is

x(t) = %n(&) + Acos(y | LL—l—mt + P) (4)

where A and ® are determined by the initial conditions. Using the fact that at t =0, x =0

and dz/dt = 0, the final solution can be written as

o(t) = "I (1 cos( [ ) )

rTm

The velocity can be obtained by differentiating Eq(5) and is given by

dx(t) _ mgsin(6) i k sin(, [ k 9 (©)
dt k r? +m " +m

A.
Z—f is maximum at ¢,,q; = ; —. Hence the maximum angular velocity can be obtained
Rz
. da(t in(0 _
using %/R = mg]:};( ) ilim = 8.7Trads™*
R2
B.

I
g2

= 1.9s

The time period is obviously given by T' = 27

ITI1. PROBLEM-3

Let L be the length and w the width of the stick. The moment of Inertia of the stick is
given by M (L? + w?) where M is the mass of the stick. Since the width of the stick is
much less than the length of the stick we approximate the moment of Inertia as I = 1—12M L2
Let m the mass of the puck, h the distance the puck strikes the stick from the centre of

mass and v; and vy be the initial and final velocities of the puck.

A.

Since there are no external torques on the system the angular momentum is conserved.

We see that m(v; —vg)h = Iw where [ = 1/12M L?. Therefore w = 1.5rads™!. The angular
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displacement after 2s is 3rad. The loss in Kinetic energy is given by AK = %mv% —imo? -

2
%IwQ =0.34J

B.

Now the stick is free to move. Let vays be the velocity of the centre of mass of the stick.
Since linear momentum is now conserved we have m(v; — ve) = Muvcy = 0.625ms~ L. The

loss in energy is now given by AK = imvi — imod — LMo, — 11w? = 0.26]

IV. PROBLEM-4

Let f, be the force of friction between the plank and the cylinders. Let f. be the force
of friction between the cylinders and the flat surface. Let us choose the direction of F' as
the positive x direction. Let f, act on the plank along negative-z direction and act on the
cylinder along the positive z direction. Also let f. act along the negative x direction. Let
a. and a, be the acceleration of the cylinders and the plank. Let v, and v, be the velocities
of the cylinder and the plank.

The force equation on the plank leads to F' —2f, = Ma,. Similarly the balance of forces
on the cylinders leads to f, — f. = ma.. The torques acting on the cylinders are governed
by the equation (f. + f,)R = I where « is the angular acceleration of the cylinders. The
condition of no slipping implies « = a./R. Hence 2f, = (m + I/R?)a.. Using I = 1/2mR?

we have f, = 3ma./4.

A.

Now we see that v, = v. + wR. Differenting with respect to time ¢ we obtain a, =

2

a. + aR = 2a,. Hence a, = = 0.8ms 2 and a. = 0.4ms~2.

_r_
M—i—%m
B.

fp = 3ma./4 = 0.6N and f. = f, — ma. = —0.2N. We note that f, is acting along the

direction of translational motion.



