
Solutions: set # 6 

#1 a) 
Method 1) 

The initial and final positions are   
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(2) .   This gives y=-2.x101 m (to one significant figure). 

Method 2) 

Since the mass starts at rest, the total work done (W) is equal to the final energy: 
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This gives y=-2.x101m. 

#1 b) 
The force,  depends only on the magnitude of , and is in the direction of , so  

The work done by such a force along a 3D path is: 
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The dot product picks out only the radial component of   
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are 0. Because F(r) is only a function of a single variable, it can be written as the (negative by 
conventional definition of potential energy) derivative of some other function . So, 
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Obviously this does not depend on the path taken, only on the end-points; hence, the force is a 
conservative force. 

 

#2 
At the top of the hemisphere, the total energy (which remains constant) for the object at rest is 
potential energy = E=mgR, taking the zero of potential energy to be zero at the base of the 
hemisphere.  If θ is defined to be the angle from the x-direction to the mass position (i.e. θ = π/2 at 
the top, and as the bead drops, θ decreases toward 0), then its total energy is E = mgRsinθ +1/2mv2 = 
mgR. So v2 = 2gR(1 − sinθ ). 



The acceleration experienced by the bead may be decomposed into tangential and radial components. 
The radial component of the acceleration is ar = =-2g(1-sinθ) (negative because it’s 

accelerating toward the origin). The forces acting in the radial direction are the component of 
gravity (-mg*sin(θ)) and the normal force. The block will lose contact with the surface when 
the normal force is 0 or -mg*sinθ)=-2g(1-sinθ) or sinθ=2/3. Once the bead loses contact with the 
hemisphere it moves according to projectile motion. If the center of the hemisphere is the origin, 

the bead’s initial coordinates are (Rcosθ, Rsinθ)=(2R/3, . The initial velocity vector is         

(v*sin θ, -v*cosθ)=( , ) = (0.76, -0.85) m/s. The direction comes from the fact that 

the velocity is at 900 to the position vector. Then ∆y=vy0t+1/2ayt2. This gives t=0.1 s 

∆x=vxt=0.08 m 

We want the distance from the edge of the hemisphere (call that D): 

D=x0+∆x-R= 0.03 m 

Alternate method of finding θ: 

Suppose the bead was fixed to the hemisphere so it could slide but couldn’t come off, and slid to the 
right. Then it would start by slowly accelerating to the right, and downward. But as it approaches the 
table, the horizontal component of its velocity would drop to 0 because it would hit while moving 
straight down (the angle between the ground and the edge of the hemisphere is 900). So at some point 
it would have to accelerate to the left. For this question, the bead is not fixed to the hemisphere, so 
there’s no force that can push it to the left, so it cannot accelerate to the left, so it loses contact 
when the horizontal component of its acceleration is 0. 

This occurs when vx=v*sin(θ )=  is at a maximum (Use sin rather than cos 
here because the velocity is at 900 to the position vector). But if vx is at a maximum, then so must 
(vx)2, which is a lot easier to work with. (vx)2=2gR(1-sin(θ))*sin2(θ)=2gR(sin2(θ)- sin3(θ)). 

  

For which the only solution is sin(θ)=2/3. This method is physically the same as the previous method 
because it is the normal force that gives horizontal acceleration. 

 

#3 
Given: U(r)=  the equilibrium position is where U(r) is a minimum or 

, so . This gives r0= =1.4 σ where r0 is the 

equilibrium position. One can verify by taking the second derivative of U(r) evaluated at r0 (the 
second derivative is >0) that this position corresponds to a stable equilibrium. 

U (r0)=  



Given the speed of the hydrogen at the equilibrium position is v0 = 800 m/s, the total energy (which 
is conserved) is E = . For a hydrogen atom, m = 1.7x10-27kg. 

The maximum distance occurs when the energy is entirely potential energy, i.e. H is not moving. 
Therefore 

E = . This is a quadratic equation in  giving 2 solutions: 

=0.34 or r = 1.7 σ, and = 0.66 which gives r = 1.2 σ. 

Note that these are on opposite sides of the equilibrium position. The maximum displacement from 
equilibrium on either side is 1.7σ-1.4σ=0.3 σ or 1.41σ-1.23σ=0.2σ. So the first solution gives the 
largest displacement with 0.3 σ = 9. x10-11m = 0.9 picometers. 

 

#4 
The linear density (mass per unit length) of the chain is ρ=  = 1 .  If the spring is moving, then 

the velocity of some part of the spring (position x) depends on x: If the end is moving at a velocity 
v(L) = v0, then v(0)=0 (one end is stationary), and v(x) = v0 .  The differential kinetic energy (dEk) 

of a small piece of spring at position x (length dx, mass dm =ρdx) is 

dEk = d( mv(x)2) = (dm) =  dx  and the total kinetic energy, EK is: 

Ek =  =  = M 

If the spring is displaced by x0 initially, then E =  with no kinetic energy. The total energy 

remains constant, so when the energy is entirely kinetic: 

E = = M 

Solving for v0: v0 =  

If we assume a cosine-like oscillation x(t) = x0cos(ωt), then v(t) = -x0ωsin(ωt). The maximum 

velocity is x0ω, and so ω =  = 8 s-1.  Note that this is only different from the usual mass-on-

spring frequency by a small constant factor.  Therefore a spring with uniformly distributed mass M 
behaves the same as a mass-less spring with a mass M/3 at the end….a useful result to introduce 
realism in many problems. 


