Solutions Set 3

1. Use: $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$. From the information given $\frac{\pi}{3} = \frac{\pi}{8} + \omega_0 + \frac{1}{2}\alpha$ $\frac{\pi}{2} = \frac{\pi}{8} + 2\omega_0 + 2\alpha$ Hence $\omega_0 = \frac{11\pi}{48} rad/s$ and $\alpha = -\frac{\pi}{24} rad/s^2$

After 10 *s*, the angular position is $\pi/3 \ rad$ and $|\omega| = |\omega_0 + \alpha(10s)| = 9\pi/48 \ rad/s$. **2** a) The radial and tangential accelerations components are given by, $\vec{a}_t = \alpha R_0 \hat{\theta}$ and $\vec{a}_r = -\omega^2 R_0 \hat{r} = -\alpha^2 t^2 R_0 \hat{r}$ and $\vec{a} = \vec{a}_t + \vec{a}_r$ is the total acceleration, if the rock starts from rest. The linear velocity is $\vec{v} = \omega R_0 \hat{\theta} = \alpha t R_0 \hat{\theta}$. At t = 1 s we have that $\vec{a} \cdot \vec{v} = av \cos(9\pi/20)$ or

 $\alpha(0.5m)(\alpha(1s)(0.5m)\hat{\theta}\cdot\hat{\theta} = \sqrt{[\alpha^2(1s)^2(0.5m]^2 + [\alpha(0.5m)]^2} \times |\alpha(0.5)(1s)|\cos(9\pi/20)$ Hence $\alpha = 6.3$ rad s⁻². After 4 sec., assuming the ball started at $\theta_0 = 0$,

$$\theta = \frac{1}{2}\alpha t^2 = 50.5 \ rad$$
 or 8 full revolutions.

b) At time t = 4 s, the angle, ϕ , between the linear velocity and total acceleration is given by $\vec{a} \cdot \vec{v} = av \cos(\phi)$. From $\vec{a} = \vec{a}_t + \vec{a}_r = (6.3s^{-2})(0.5m)\hat{\theta} - (6.3s^{-2})^2(4s)^2(0.5m)\hat{r}$ and $v = (6.3s^{-2})(4s)(0.5m)\hat{\theta}$ we get $\phi \approx \pi/2$.

c) In general if the ball is located at position $\vec{r} = R_0 \hat{r}(\theta)$ and it has velocity $\vec{v} = R_0 \omega \hat{\theta}(\theta)$ at the time of the break, t_l , the distance from the point where the ball started is $\left|R_0 \hat{r}(\theta) + \vec{v} t_1 \hat{\theta}(\theta) - R_0 \hat{r}(\theta = 0)\right| = \left|\alpha R_0 t_1 \hat{\theta}(\theta)\right|$. Setting $t_l = 1$ s (flight time) (with $\theta = 8$ rev.=0 rad) we find that the rock travels 13 *m* from the point where it started.

3. Let the positive x-direction be the direction of water flow with $\vec{u} = u\hat{i} = 0.1\hat{i}$ (m/s) so that the y-direction is directly across the river. Justin's velocity relative to the water is $\vec{v}' = v'_x\hat{i} + v'_y\hat{j} = v'\cos\theta'\hat{i} + v'\sin\theta'\hat{j}$ and his velocity relative to the shore is $\vec{v} = v_x\hat{i} + v_y\hat{j} = (v'_x + u)\hat{i} + v_y\hat{j} = v\cos\theta\hat{i} + v\sin\theta\hat{j}$. Given that he arrives on the opposite shore, the x-component of his velocity relative to the shore is zero $v'\cos\theta' + u = v_x = 0$, and since he arrives in 90 sec, $50/v_y = 50/v'\sin\theta' = 90$. Hence $\theta' = \tan^{-1}(-50/9) = 1.75$ rad=100 degrees (he has to point himself upstream slightly relative to the water). This gives v' = 0.56 m/s, his speed relative to the water.

If Justin ends up 5 m upstream, if the origin is chosen to be his starting point, his final position is x= -5, y = 50 (in meters). Hence $t = x/(u + v'\cos\theta') = y/v'\sin\theta'$ gives $\theta' = 1.83 \ rad (105^\circ)$ and t = 92 s. If x= 5, y = 50 $\theta' = 1.66 \ rad. (95^\circ)$ and t = 88 s.

4. Define :

- *v_b*: Carole's burst velocity relative to road
- *t*₁: time it takes Carole to get to front of pack
- *t*₂: time it takes Carole to slip to back of pack starting at front

Solve the problem in the frame of the pack of riders. In this frame, when she makes a burst her velocity is $v_b - 9$ and she moves 50 m. When she tires her velocity in the riders' frame is $v_b/2 - 9$ and she moves -100 m. Hence $t_1 + t_2 = 50 = \frac{50}{v_b - 9} + \frac{(-100)}{v_b/2 - 9}$

Solving the quadratic equation for v_b , $v_b = 12 m/s$, $t_1 = 17 s$.