Solutions: Problem set #1

1. A glance at a map shows that Greenland is more than 10^3 km long but less than 10^3 km across, so a reasonable estimate of its area is 10^6 (km)². If all the ice on Greenland melts one has about 10^7 (km)³ of water released to the oceans. Since the oceans cover 2/3 of the Earth (radius, $R_E = 7 \times 10^3$ km), which has a surface area of $4\pi R_E^2$ the rise in sea

level is $\frac{10^7 (km)^3}{\frac{2}{2} 4\pi (7x10^3 km)^2} \approx 25 m$. This is of the same order of magnitude as the *Globe*

and Mail's number given various approximations (thickness of ice sheet, etc.).

2. i) All terms must have the dimension of length. Hence $[am^2t^3] = L$. By inspection $[a] = LM^2 T^3$. For the second term $[bc^3Gv^2] = L$. But $[bc^3Gv^2] = [b][c^3][G][v^2] = [b][L^3T^3]$ $[FL^2M^2][L^2T^2] = [b][L^3T^3] [MLT^2L^2M^2][L^2T^2] = [b]L^8 M^1T^7$. Hence $[b] = L^{-7} MT^7$.

ii) Matching dimensions of the RHS and LHS we have $[period] = T = [L^x][g^y][m^z] = L^{x+y}T^{-2y}M^z$. We have x + y = 0, y = -1/2, z = 0 so that x = 1/2. Therefore $T = k\sqrt{L/g}$.

3. i) Let the bridge be at height x = 0 and the first rock be dropped at t = 0. Its position is $x_1 = -\frac{1}{2}gt^2$. If the second rock is dropped with speed u, its vertical position after it is dropped is $x_2 = -u(t-1) - \frac{1}{2}g(t-1)^2$. When the rocks hit the river $x_1 = x_2 = -40$. From the position equation for the first rock we get $t = \sqrt{8} s$. Hence from the position equation for the second rock, $u = 13 ms^{-1}$.

ii) Relative to the slow train the fast train is approaching at a speed of v_1-v_2 and is initially at a separation of -d. The fast train must have acceleration, a < 0 and with its maximum acceleration (minimum *magnitude* of acceleration) both trains would be moving at same speed (relative speed = 0) when they almost touch. Hence $(v_2 - v_1)^2 - 0^2 = 2a_{max}(-d)$. For no collision $a < a_{max} = -\frac{(v_2 - v_1)^2}{2d}$.

4. The instantaneous velocity and acceleration are given by $v = \frac{dx}{dt} = 0.3(2\pi)\cos 2\pi t$ and $a = \frac{dv}{dt} = -0.3(2\pi)^2 \sin 2\pi t$. The speed and acceleration at t = 1 s are $|v(t = 1)| = 0.6\pi m/s$ =1.9 m/s and a(t = 1) = 0. The amplitude of the periodic motion is 0.3 m and the motion repeats every 1 s (the period). In each period the block moves a distance of 4 times its maximum amplitude or 1.2 m. In 4 s it moves a distance 4.8 m. In the next 0.3 s it is at x= 0.28 m; it went to its maximum displacement and moved back a distance 0.02. Hence the total distance traveled =4.8+0.3+0.02 = 5.1(2) m. The average speed of the block in this time interval = distance/time = 5.1/4.3 = 1.2 m/s. The average velocity is {x(t = 4.3)-x(t = 0)}/4.3 = 0.28/4.3 = 6.5x10^{-2} m/s.