
PHY180F 
Solutions Problem Set # 8  

 
1. The clay ball adheres to the stick upon collision. The conservation of linear momentum 
principle leads to:  
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center of the stick as the origin, the position of the center of mass (CM) along the 
horizontal axis is: 
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where d = 25 cm from the center of the stick. The conservation of the angular momentum 
around the CM  is expressed as: 
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The moment of inertia of the stick around the CM of the system is found from the parallel 
axis theorem: 
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The moment of inertia of the ball about the CM is: 
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(i) By inserting the results (1.4) and (1.5) into (1.3), we obtain the angular speed 
after collision:  39.0=! rad/s. 

(ii) The kinetic energy of the system afterwards is given by:        
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2. For a single particle, the angular momentum vector is defined by prL != , where r is 
radius vector and p is the momentum. For a system of particles (Fig. 2.1): 
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      Fig. 2.1 
 
We have the following relationships relative to the center-of-mass system of coordinates: 
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     jCMj vvv !+= .     (2.3) 
With p =mv, the total angular momentum reads: 
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Explicitly: 
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The relation Mm
j

j =!  (M as the total mass of the system) has been introduced.  

Since 0m
j

jj =!" r , equation (2.6) is reduced to: 
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Therefore, the angular momentum consists of a sum of the angular momentum of the 
center of mass (first term in r.h.s. of 2.7) and the angular momentum about the center of 
mass (second term in r.h.s. of 2.7). If the center of mass is chosen to be the origin of 
coordinates (Rcm=0), (which can be done without loss of generality), then: 
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3.   

                                             
 Fig 1. Problem 3 

 
The dynamics of the disk follows the second law for rigid bodies: !="#

j

j I , where I is  

the moment of inertia with respect to a rotation axis passing through P, α is the angular 

acceleration of the object (
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d ) and τ corresponds to the torque induced by 

external forces. The only force that generates torque in this case is the weight of the disk 
W and the equation for the angular amplitude θ is given by 
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where the theorem of parallel axis has been used. In the small-angle approximation, 
sinθ≈θ and  (3.1) becomes into the  SHO equation in the variable θ: 
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The frequency of vibration is therefore: 
 

( )
!!
"

#
$$
%

&
+

=
+

='
2

22

Mh
2

MR

hMg

MhIcm

hW .         (3.3) 

The period of is obtained from (3.3):  
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This period is a minimum if 
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it corresponds to a suspension point below the centre of mass and an imaginary period). 
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4. We can solve this problem by considering the net forces and the net torques which act 
on the sphere.  If Ff is the frictional force acting on the bottom of the sphere, then we 
have that Newton’s second law for the sphere  net force acting on the sphere following a 
displacement x is 
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The net torque about the centre of mass of the sphere arises from friction only since the 
spring induces no torque about the sphere centre. We then have 
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 where α is the angular acceleration.  From the no slip condition of a point on the bottom 
of the sphere we have  
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Combining 4.1, 4.2 and 4.3 gives (with 
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One could also use the principle of conservation for the total (mechanical) energy: 
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where 
rot
K  is the rotational kinetic energy, 

trans
K  corresponds to the translational kinetic 

energy associated to the center of mass, and 
elast

U  is potential energy of the springs. 
Explicitly: 
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The speed of the center of mass of the sphere is related with its angular speed ω through 

the non-slip condition: 
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Taking the time-derivative of the total energy, we get: 
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since E=constant. Equation (4.7) has two solutions: (i) 0x =
•

, which indicates that the 
system remains in rest, and (ii) 
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which is of the form 
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The period T for  k = 500 N/m, M = 10 kg and R = 0.1 m, is: 
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