
Solutions 
Problem set # 4 

(Prepared by H. van Driel) 
 
 

1.   The train experiences an acceleration at any time given by 
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the speed of the train (= tangential speed).  We require that the magnitude of the 
acceleration 
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" 0.2g .   For constant tangential acceleration  
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 where t is time over which the train accelerates, we have that at 

any time that 
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" 0.2g .   Within the square root only the centripetal 

acceleration, 
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/ R = 2.4 m2/s4 or 
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a
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< 1.5  m/s2.  From 
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t
 , t  > 10  s  for vf  

= 300 km/hr =83 m/s  with  vi =250 km/hr =69 m/s. The minimum time is ~ 10 s. 
 
 
2.  i) For the first situation, we have that if the displacement of the block from 
equilibrium is taken as x, then the spring on the left is extended (if x is positive) and 
exerts a restoring force towards the left, while the spring on the right is compressed and 
exerts a force to the left as well. The total force on the mass is 

! 

F1 + F2 = "k1x " k2x = "(k1 + k2 )x = M
d
2
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 and so the angular or natural/resonance 

frequency of the system is 

! 

"0 =
k1 + k2

M
.  In the second situation, the force equation is 

the same, and so the two systems are dynamically equivalent and have the same 
resonance frequency. 
 
ii) If the spring originally with length L is extended by 

! 

x  by a force F its new length 
becomes 

! 

L + x = L + F / k .  A point in the middle of the spring therefore moves from L/2 
to 

! 

L + x( ) / 2 so it has moved 

! 

x / 2 . When the spring is extended, by Newton’s third law 
any point (including the midpoint) in the massless spring experiences the same tension or 
restoring force, F, to the right and to the left. Hence if half the spring has constant keff  we 
have x/2=F/ keff so that keff=2k. 
    For the H2 molecule, both atoms oscillate at the same frequency (by symmetry) and are 
accelerating at all times (except when they pass through their equilibrium position). 
Therefore neither serves as an inertial frame of reference to apply Newton’s second law.  
The only point that can serve as a reference point for an inertial frame is (by symmetry) 
the midpoint of the bond (for a more complex molecule the point would be the center of 
mass).  Therefore each atom is vibrating against the center point with half the “bond 
spring”. If the “bond spring” has constant k, half the “bond spring” has constant 2k  (see 



above) and we have the resonance or natural frequency of each atom is 

! 

" = 2k / mproton .  For 

! 

mproton= 1.7x10-27kg, we have k = 260 N/M. 
 
3.  The equilibrium position is given by F=0. This gives 

! 

xeq = C / B= 5 cm. If we define 
the displacement relative to the equilibrium position to be 

! 

X = x " xeq , then we can write 

the equation of motion as 

! 
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(derivative of a constant is zero). This equation has the general solution 
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X = Acos "0t + #( ) where 
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"0 = B / R =
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10 /s. Then 
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x = xeq + Acos("0t + #)  and 
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vx =
dx

dt
= "#0Asin #0t + $( ).  Applying x = 0.5 m at t = 0, and vx = -1 m/s at t= 1 s, we 

have two equations in two unknowns (A, φ), namely, 0.5 =.05 +Acosφ,  and -1 = 

! 

" 10Asin( 10 + # ) . Eliminating A we have an equation for φ.  Paying attention to 
where we are in the cycle we find φ = −0.6 and A= 0.6 m.  We then have that the 

acceleration is 
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(0.6)cos 3 10 " 0.63)( ) = 5. m/s2. 

 
4.  For the block moving up the plane the equation of motion along the plane is: 

(1) 

! 

M
d
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= "Mgsin# "Mgcos#(0.1+ 0.03L) = B "DL  where                     

! 

B = "Mgsin# " 0.1Mgcos#  
  

! 

D = 0.03Mgcos" .  
 
We saw from problem 3 that the general solution to equation (1) is  

! 

L = B / D+ Acos "0t + #( )  or 

! 

L = "37 m + Acos 0.46t + #( )  (using g=10 m/s2, 
θ =π/4, 

! 

"0 = D / M ). Using the condition that the object starts at L = 0 at t = 0 with 
v = 

! 

"A#0 sin #0t + $( )= 5 m/s at t = 0, we can find A and φ; A=  38.5 m and 
φ = −0.28. The block reaches its maximum position up the plane when the cosine 
function’s argument is zero, so that Lmax=1.5 m. 

              
For the block moving down the plane the equation of motion is    
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= "Mgsin# + Mgcos#(0.1+ 0.03L) = B'+DL  where 

          

! 

B'= "Mgsin# + 0.1Mgcos#  
   Taking a hint from what we did in Q3 and the earlier part of this problem, let’s define 

L’=L-B’/D.  Then the equation of motion becomes 
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whose second derivative returns the function is the exponential function, 

! 

e
±t . The general 

solution to this equation is 
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"t D /M  where C, G are constants. We then 

have that 

! 

L =
B'

D
+ Ce

0.46t
+Ge

"0.46t
= "30m + Ce

0.46t
+Ge

"0.46t . But since L = Lmax and 



v = 0 at t = 0, we calculate that C=G= 15.75 m.  When L= 0 (block back at bottom), t ~ 
0.66 s and v = -4.6  m/s. The speed of the block is therefore 4.6 m/s at the bottom. 
 
Yes, you can also do this using conservation of energy, something we haven’t covered 
yet.  That technique also requires that you known integration.  
 
 
 


