
Solutions to Questions of Term Test I 2005 
 

 
Problem 1 
(a)  and since rFrτ
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r
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 are perpendicular 

τ = rF = 30.0 x 0.800 = 24.0 N·m 
 
 
(b) τ = Iα 
α = 24.0 /(0750 x 30.0 x 30.0) = 3.56 x 10-2 s-2 ( rad/s2) 
This question is marked for correct units. 
 
 
(c) at = α r = 3.56 x 10-2 x 30.0 = 1.07 m/s2

 
 
(d) K = ½ mv2 and when K = 50.0 J 
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This question is marked for the correct number of significant figures. 



Problem 2 

(a) 
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(b) x = A cos(ωt)  describes the motion since x = A when t = 0 where A = 5.00 cm. 
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kω  = 14.14 s-1

At t = 0.200 s, 
x = 5.00 cos ( 14.14 x 0.200) = 5.00 x (- 0.951) = -4.76 cm 
 
 
(c) )tcos(ωAx ϕ+=  where x = - ½ A at t = 0. 
 
- ½ A = )cos(A ϕ  
 

)cos(ϕ  = - ½ 
Referring to the diagram, ϕ  is in the second or third 
quadrant. 
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But it is moving to the right so the slope of the graph must be positive and so π
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(d) When the mass moves, one of the springs is compressed and the other is stretched. 
When one of the springs is removed then only half the force is required to move the mass 
the same distance and thus the spring constant of the “ new” spring is half the original 
spring constant. 
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Problem 3 
The position vector for an arbitrary point in cylindrical coordinates is r̂rr =

r . 

( )
dt

r̂drr̂
dt
drr̂r

dt
d

dt
rd

+==
r

 

Since the particle is in uniform circular motion then r is constant and 0
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   (1).     From the diagram 
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ĵsinθîcosθr̂ +=  and therefore 
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Substituting (2) into (3) gives  θ̂
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Substituting (3) into (1) gives θ̂
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Since the particle is in uniform circular motion the value of 
dt
dθ  can be obtained 

considering one complete revolution. 
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with radius r and the speed v of the particle. Since tvd =  
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Alternatively one can get 
dt
dθ  by considering the definition of θ in radians. 

r
sθ = where s 

is the arc length and r is the radius of the circular path of the particle which is constant. 
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Substituting into (6) into (5)  gives vθ̂vθ̂
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