PHY 180

Assignment 6 Solutions November 4, 2004

Assignment 6 Question 1

(a) For the bob to just barely swing through a circle, its speed will be zero at the top of the circle.

Let v_b be the initial speed of the bob after the collision. From Conservation of Energy: $K_i + U_i = K_f + U_f$

$$\frac{1}{2}Mv_b^2 + 0 = 0 + Mg2L$$
$$v_b^2 = 0 + 4gL$$
$$v_b = 2\sqrt{gL} \qquad (1)$$

For the bullet hitting the bob: From Conservation of Momentum,

$$p_{i} = p_{f}$$

$$mv + 0 = m\left(\frac{v}{2}\right) + Mv_{b} \qquad (2)$$

$$mv - \frac{1}{2}mv = M 2\sqrt{gL}$$

$$\frac{1}{2}mv = 2 M\sqrt{gL}$$

$$v = 4 \frac{M}{m}\sqrt{gL}$$

Using (1) in (2)

(b) For the bob to just barely swing through a circle, its speed will be zero at the top of the circle.

Let v_b be the initial speed of the bob after the collision. Work is done by the force of gravity to reduce the kinetic energy of the bob to zero.

Work Done = W =
$$\int_{0}^{\pi} \tau \, d\theta$$

= $\int_{0}^{\pi} \vec{r} \, x \, \vec{F} \, d\theta$
= LMg $\int_{0}^{\pi} \sin \theta \, d\theta$ = LMg[$-\cos \theta$] $\Big|_{0}^{\pi}$ = -LMg[$-1-1$]
W = 2LMg

Kinetic energy at the bottom is $\frac{1}{2}Mv_{\rm h}^2$.

$$\therefore \quad \frac{1}{2} M v_{\rm b}^2 = 2 L M g \qquad (1)$$

From Conservation of Angular Momentum

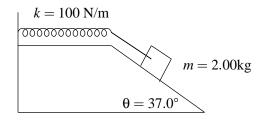
$$mLv = \frac{1}{2}mLv + MLv_{b}$$

$$Mv_{b} = \frac{1}{2}mv$$

$$v_{b} = \frac{1}{2}\frac{m}{M}v$$
(2)
Using (2) in (1)
$$\frac{1}{2}M\frac{1}{4}\frac{m^{2}}{M^{2}}v^{2} = 2LMg$$

$$v^{2} = 16Lg\frac{M^{2}}{m^{2}}$$

$$v = 4\frac{M}{m}\sqrt{gL}$$



Use conservation of energy:

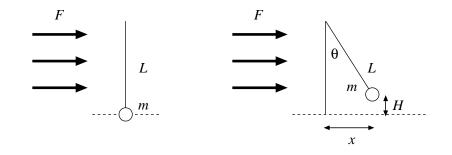
$$K_i + U_i - F_f d = K_f + U_f$$

$$0 + mgh_i - F_f d = mgh_f + \frac{1}{2}kd^2$$

where h_i and h_f are the initial and final heights of the block, d is the amount by which the block moves down the incline (d = 20.0 cm), i.e. the amount by which the spring is stretched, and F_f is the force of friction.

Using $F_f = \mu N$ we get,

$$\begin{aligned} -\mu Nd &= -mg(h_i - h_f) + \frac{1}{2}kd^2 \\ \mu(mg\cos\theta)d &= mg(d\sin\theta) - \frac{1}{2}kd^2 \\ \mu &= \frac{mg(d\sin\theta) - \frac{1}{2}kd^2}{(mg\cos\theta)d} \\ \mu &= \frac{(2.00)(9.80)(0.200)(\sin 37.0^\circ) - \frac{1}{2}(100)(0.200)^2}{(2.00)(9.80)\cos 37.0^\circ(0.200)} \\ \mu &= 0.114 \end{aligned}$$



(a)

First find *x* in terms of *H* and *L*:

$$(L-H)^{2} + x^{2} = L^{2}$$

 $L^{2} - 2LH + H^{2} + x^{2} = L^{2}$
 $x^{2} = 2LH - H^{2}$

Now use conservation of energy:

$$K_{i} + U_{i} + Fx = K_{f} + U_{f}$$

$$0 + 0 + Fx = mgH$$

$$F^{2}x^{2} = (mgH)^{2}$$

$$F^{2}(2LH - H^{2}) = (mgH)^{2}$$

$$H^{2}(F^{2} + (mg)^{2}) - H(F^{2}2L) = 0$$

$$H(H(F^{2} + (mg)^{2}) - F^{2}2L) = 0$$

Therefore, H = 0 or, as the upper limit,

$$H(F^{2} + (mg)^{2}) - F^{2}2L = 0$$

$$H = \frac{F^{2}2L}{F^{2} + (mg)^{2}}$$

$$H = \frac{2L}{1 + (mg/F)^{2}}$$

For $H \to 0$, need $F \to 0$, i.e. no wind gives a maximum height of zero.

For $H \to 2L$, need $F \to \infty$, i.e. a very strong wind causes the ball to blow all the way around.

So, the equation is valid in for both the cases $0 \le H \le L$ and $L \le H \le 2L$.

(b)

$$H = \frac{2(2.00)}{1 + [(2.00)(9.80)/(14.7)]^2}$$

H = 1.44 m

(c)

Take sum of forces in *x*-dir:

$$F - T\sin\theta = 0$$
$$T = \frac{F}{\sin\theta}$$

where T is the tension in the string.

Now in the *y*-dir:

$$T\cos\theta - mg = 0$$

$$\frac{F}{\sin\theta}\cos\theta - mg = 0$$

$$F\tan\theta = mg$$

$$\tan\theta = \frac{F}{mg}$$

$$\theta = 36.9^{\circ}$$

From geometry, we have

$$\cos \theta = \frac{L - H_{eq}}{L}$$

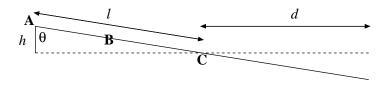
$$H_{eq} = L(1 - \cos \theta)$$

$$H_{eq} = (2.00)(1 - \cos 36.9^{\circ})$$

$$H_{eq} = 0.400 \,\mathrm{m}$$

(**d**)

At most the equilibrium height can be equal to *L*. This occurs when $F \to \infty$, $\tan \theta \to \infty$, $\theta \to 90^{\circ}$ and thus $H_{eq} \to L$.



(a)

Can use kinematics equations for constant acceleration or conservation of energy, lets use conservation of energy between point **A** and **C**:

$$K_{A} + U_{A} = K_{C} + U_{C}$$

$$\frac{1}{2}mv_{A}^{2} + mgh = \frac{1}{2}mv_{C}^{2}$$

$$v_{C} = \sqrt{v_{A}^{2} + 2gh}$$

$$v_{C} = \sqrt{(2.50)^{2} + 2(9.80)(9.76)}$$

$$v_{C} = 14.1 \,\mathrm{ms}^{-1}$$

(b)

The work done by the friction of the water is equal to the change in kinetic energy,

$$W_{\text{water}} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_C^2$$
$$W_{\text{water}} = 0 - \frac{1}{2}mv_C^2$$
$$W_{\text{water}} = -\frac{1}{2}(80.0)(14.1)^2$$
$$W_{\text{water}} = -7.90 \times 10^3 \text{J}$$

(c)

$$W_{\text{water}} = -F_{\text{water}}d$$

$$F_{\text{water}} = -\frac{W_{\text{water}}}{d}$$

$$F_{\text{water}} = \frac{7.90 \times 10^3}{50.0}$$

$$F_{\text{water}} = 158\text{N}$$

Normal force at point **B** is,

$$N_B = mg \sin \theta$$

$$N_B = mg \left(\frac{\sqrt{l^2 - h^2}}{l}\right)$$

$$N_B = (80.0)(9.80) \left(\frac{\sqrt{(54.3)^2 - (9.76)^2}}{54.3}\right)$$

$$N_B = 771 \text{N}$$

(e)

Summing up the forces acting on the sled at point C (keeping in mind in ramp curves) we have:

$$N_{C} - mg = \frac{mv_{C}^{2}}{R}$$

$$N_{C} = mg + \frac{mv_{C}^{2}}{R}$$

$$N_{C} = (80.0)(9.80) + \frac{(80.0)(14.1)^{2}}{20.0}$$

$$N_{C} = 1.57 \times 10^{3} \text{N}$$