SOLUTIONS TO ASSIGNMENT 42004
(1)

Servary
6. 9

$$
v_{t}=\sqrt{\frac{2 m g}{D \rho A}}
$$

Fon'. Guat soun $v_{t_{g}}=\sqrt{\frac{2 \pi g}{D_{j} \rho A_{g}}}$
Fon a boscbour

$$
v_{t_{b}}=\sqrt{\frac{2 m_{b} g}{D_{b} \rho A_{b}}}
$$

$$
\begin{aligned}
& \frac{v_{k b}}{v_{k s}}=\sqrt{\frac{x A_{b} g}{D_{b} f A_{b}} \frac{D_{j f} A_{2}}{x_{i n g} g}} \\
& \text { Bu we assumeo } \\
& D_{j}=D_{0} \text {. } \\
& \text { Foon Tonec 6.1 } \frac{v_{5}}{r_{g}}=\sqrt{\frac{m_{b} A_{g}}{A_{b} m_{g}}}=\sqrt{\frac{0.145 \times 1.4 \times 10^{-3}}{0.046 \times 4.2 \times 00^{-3}}}=\sqrt{1.0507}
\end{aligned}
$$

$$
\frac{v_{t b}}{v_{b}}=1.03
$$

I his meand ther the tamenid velmats for the bracela \therefore stanger thar the terminid veloutg for the gayball

Bu1 Faom Tabuc 6.1 the termind velouty far goly ball is geater thar for a hocchale what is apposite of whot we here caluncatas:
Ihis meand Char our ascumptoin Chor the ding cofpfrieints wew the somer for galf halls and beseled is enconart.

Both an spter tar the dempled smpoer of the goly ball vednces the dhag by perventing turbulence.; Ihat is, the deag coeffecicior is les fore a goly bace $A_{\text {in }}$ for a breballe.

$$
\begin{aligned}
& \text { P6.40 } \\
& -k m v^{2}=m \frac{d v}{d t} \\
& -k d t=\frac{d v}{v^{2}} \\
& -k \int_{0}^{t} d t=\int_{v_{0}}^{v} v^{-2} d v \\
& -k(t-0)=\left.\frac{v^{-1}}{-1}\right|_{v_{0}} ^{v}=-\frac{1}{v}+\frac{1}{v_{0}} \\
& \frac{1}{v}=\frac{1}{v_{0}}+k t=\frac{1+v_{0} k t}{v_{0}} \\
& v=\frac{v_{0}}{1+v_{0} k t}
\end{aligned}
$$

*P6.41
(a) From Problem 40,

$$
\begin{aligned}
& v=\frac{d x}{d t}=\frac{v_{0}}{1+v_{0} k t} \\
& \int_{0}^{x} d x=\int_{0}^{t} v_{0} \frac{d t}{1+v_{0} k t}=\frac{1}{k} \int_{0}^{t} \frac{v_{0} k d t}{1+v_{0} k t} \\
&\left.x\right|_{0} ^{x}=\left.\frac{1}{k} \ln \left(1+v_{0} k t\right)\right|_{0} ^{t} \\
& x-0=\frac{1}{k}\left[\ln \left(1+v_{0} k t\right)-\ln 1\right] \\
& x=\frac{1}{k} \ln \left(1+v_{0} k t\right)
\end{aligned}
$$

(b) We have $\ln \left(1+v_{0} k t\right)=k x$

$$
1+v_{0} k t=e^{k x} \text { so } v=\frac{v_{0}}{1+v_{0} k t}=\frac{v_{0}}{e^{k x}}=v_{0} e^{-k x}=v
$$

For the block to remain stationary, $\sum F_{y}=0$ and $\sum F_{x}=m a_{r}$.

$$
n_{1}=\left(m_{p}+m_{b}\right) g \text { so } f \leq \mu_{s 1} n_{1}=\mu_{s 1}\left(m_{p}+m_{b}\right) g .
$$

At the point of slipping, the required centripetal force equals the maximum friction force:

$$
\therefore\left(m_{p}+m_{b}\right) \frac{v_{\max }^{2}}{r}=\mu_{s 1}\left(m_{p}+m_{b}\right) g
$$

or $v_{\max }=\sqrt{\mu_{s 1} r g}=\sqrt{(0.750)(0.120)(9.80)}=0.939 \mathrm{~m} / \mathrm{s}$.
For the penny to remain stationary on the block:

$$
\sum F_{y}=0 \Rightarrow n_{2}-m_{p} g=0 \text { or } n_{2}=m_{p} g
$$

and $\sum F_{x}=m a_{r} \Rightarrow f_{p}=m_{p} \frac{v^{2}}{r}$.
When the penny is about to slip on the block, $f_{p}=f_{p, \max }=\mu_{s 2} n_{2}$ or $\mu_{s 2} m_{p} g=m_{p} \frac{v_{\max }^{2}}{r}$

$$
v_{\max }=\sqrt{\mu_{\mathrm{s} 2} r g}=\sqrt{(0.520)(0.120)(9.80)}=0.782 \mathrm{~m} / \mathrm{s}^{-}
$$

FIG. PG. 60

This is less than the maximum speed for the block, so the penny slips before the block starts to slip The maximum rotation frequency is

$$
\operatorname{Max} \mathrm{rpm}=\frac{v_{\max }}{2 \pi r}=(0.782 \mathrm{~m} / \mathrm{s})\left[\frac{1 \mathrm{rev}}{2 \pi(0.120 \mathrm{~m})}\right]\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=62.2 \mathrm{rev} / \mathrm{min}
$$

