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THE WILBERFORCE SPRING

REFERENCES

A.P. French, Vibrations and Waves, Chapt. 5

F.H. Newman and V.H.L. Searle, The General Properties of Matter, Chapt. 5, Sec. 5.11 (photocopy
available at the Resource Centre)

F.C. Champion and N. Davy, The Properties of Matter, 3rd edition, Chapt. IV. Sec. 4.16 (photocopy
available at the Resource Centre)

INTRODUCTION

The Wilberforce spring can undergo two types of
harmonic motion.  First, it can oscillate up and down,
in which case the period should depend only on the
particular spring used and the total mass on the end of
the spring. Note that the simple relation for the mass on
the end of a massless spring that you learn in lectures is
not applicable in this case:  i.e.,

Ttransl � 2�
M
k
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where M = mass of the bob, and k = spring constant (force/extension), because in this situation you
cannot neglect the fact that the centre of mass of the spring is also oscillating.  In fact, for the
uniform massy spring, as shown in the above references:

Ttransl � 2�
M �

m
3

k

where m = mass of the spring

The other type of harmonic motion possible is a rotational oscillation.  The period of the rotational
oscillation depends on the particular spring and on the moment of inertia I of the mass (weight plus
frame system) on the end of the spring.  I can be varied by moving the position of the movable
weights. The total moment of inertia for the weights plus frame is I = Io + 2mwd2 , where Io = moment
of inertia of frame(which can be measured using the methods of, e.g.the experiment on the Torsion
Pendulum, q.v.), mw = mass of one movable weight, and d = distance of each of the movable weights
from the centre. For the massy spring with the frame and weights attached to the end,

Trot � 2�
I � �I1

c

where I1 = moment of inertia of the spring, � = a constant (representing the "fraction" of the spring
that is oscillating), and c = torsion constant of the spring (torque/angular displacement). 
(Theoretical expressions for these constants in terms of the parameters of the spring can be found
in the quoted references.)

In this system, these two types of harmonic motion, translational and rotational, are not entirely
independent; there is a slight coupling between them.  This is because the spring has a slight
tendency to coil and uncoil as it is extended or compressed.  The Wilberforce spring is thus an
example of two weakly coupled resonant systems, other examples being  the splitting of energy
levels in the ammonia molecule, two simple pendula of similar length with a spring jointing the
upper parts of their strings or thus, the Wilberforce spring is a good way to study mechanical
resonance in coupled systems.
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THE EXPERIMENT

PART I:

In order to study the mechanical resonance you will want to study the transfer of energy from one
mode of oscillation to the other as a function of the period of the rotational motion, particularly for
values of Trot close to Ttransl.  (Note that the apparatus allows you to vary Trot, but Ttransl is fixed.)  The
energy of the translational motion can be estimated from the maximum amplitude in case of the
oscillations, and the rotational energy from the maximum angular amplitude (visual estimates only).
Remember that the energy varies with the square of the amplitude.

Another interesting parameter is the time necessary to complete the maximum energy transfer from
one mode to the other as a function of Trot.

For Trot = Ttransl the phase relationship between the two modes of oscillation may be examined.  Some
springs tend to coil up as they are being extended, others uncoil.  As shown in the references quoted
above, the relative value of the shear modulus to Young's modulus for the metal of the spring
determines which case holds for your spring. This can also be determined experimentally by
watching the spring as it transfers energy back and forth.  Also, you may want to watch the phase
relationship between the two modes when energy is being transferred in one direction versus the
phase when the energy transfer is going the other way.

PART II:

There are various additional investigations:

(a) Data you have already obtained above can be used to verify the relation between I and Trot.

(b) The spring constant k can be determined by hanging the provided weights from the end of
the spring with the special hook and pointer.  Then, you may want to see if the expression
for Ttransl gives the measured period within your experimental uncertainty.

(c) By using the relations given in the references, you may, with some effort, relate Ttransl and Trot

to the physical dimensions, shear modulus, and Young's modulus of the spring.

(d) You might want to identify the normal modes (eigenmodes) of this system under the
condition of Trot = Ttransl.

(dh - 1974, jbv - 1990)


