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Free Fall 

PREPARATORY QUESTIONS 

1. You measure the initial (s1) and the final (s2) positions of a falling object with a tape measure, 

which has a millimeter scale. The distance s covered by the object is the difference between these 

two values. What are the reading errors in s1 and s2? 

2. Now, take into account additional error in the metal scale that is, according to the manufacturer, 

one part in 4000. Give an expression for the total error in s.  

3. The reading error of the timer is 0.05 ms. What is the error in a calculated value of average 

velocity if the measurements of positions and time were done for just one run?  

4. If air resistance is not negligible, you can use the equation below for the distance vs. time and the 

coefficient of air resistance α: 

 

If you fit distance versus time to a third-order polynomial,   

 

the fitter will give values and errors for the coefficients a1, a2 and a3. Write the equations for v0,   

g and α in terms of a1, a2 and a3; and the equations for the error in g and α in terms of errors in a1, 

a2 and a3. 

 

INTRODUCTION 
 

The "modern" study of objects in free fall near the Earth's surface was begun by Galileo some 400 

years ago. In this experiment, you will use the free fall of an object to determine the acceleration due 

to gravity g. Another goal of the experiment is to study the effect of air resistance.  

 When an object is in free fall near the Earth's surface and air resistance is considered negligible we 

can relate the distance s the object falls in a time t to its initial position s0 at time t = 0, the initial 

speed v0 at time t = 0, and the acceleration due to gravity g according to: 

                                                  (1) 

 

 

If you fit distance s versus time t to a second order polynomial ("powers" of 0, 1, 2 in the language 

of the fitter), the fit is to: 

 

                                                  (2) 

You can easily figure out the relationship among constants of equations (1) and (2).  
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The apparatus for this experiment is sufficiently precise to display that for some objects air 

resistance is not negligible. The air resistance exerts an upward force F, which causes an upward 

acceleration aair resistance on the object of mass m: 

                                                       (3) 

 

 

 

In fluid dynamics this force is called drag [1: pp.150-156; 2: pp.167-171]. Drag is explained by 

viscosity of the medium surrounding the moving object. Drag has two components: 1) skin-friction 

drag due to the force of friction between the surface of the object and molecules of the medium; and 

2) pressure drag, which appears when eddies and whirlpools are formed behind the moving object 

that produce the decrease of pressure behind the object compared to the head-on pressure. Fig.1 [3] 

shows objects of different shape and relative size moving from the right to the left in fluid with 

viscosity. The shape of the object influences the relative contribution of skin-friction drag and 

pressure drag in the total drag force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. The relative comparison between skin friction drag 

and pressure drag for various aerodynamic shapes [3]. 
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Note that the drag of the flat plate and the circular cylinders is dominated by pressure drag, whereas, 

in contrast, most of the drag of the streamlined body is due to skin friction.  

 

Skin friction is directly proportional to the relative velocity of the object and the medium, and plays 

the main role in resistance with respect to an object moving slowly in medium with great viscosity. 

Pressure drag is proportional to the square of velocity and is more significant for the same object 

moving with greater velocity in less viscose media. The air can be assumed to have low viscosity. 

 

Thus, the upward acceleration due to the air resistance depends on the speed, size and mass of the 

object and on its surface roughness and shape. In the experiment with freely falling object, the 

upward acceleration is approximately equal to: 

 

                                                                                                                             (4)                                                                                  

                                           

Instantaneous acceleration is no more constant and the simple relation between distance and time 

becomes more complex.  

 

You can try to write the equation of motion basing on the second Newton’s law and find the 

differential equation to be solved to obtain the expression for distance traveled by the falling object 

as a function of time. This differential equation can be solved analytically and the position of the 

falling object can be obtained as a function of time t; position s0 and velocity v0 at the time instant t = 

0; the acceleration due to gravity g; and coefficient α of the equation (4). Values g and α can be 

combined in α/gvterm = , the terminal speed [1: p.152; 2: p.170] of the falling object. This value is 

the maximum speed that can be theoretically achieved by the object when the drag force becomes 

equal to the force of gravity.  

 

Because: 1- α cannot be measured directly, 2 - equation (4) is accepted but not approved, and 3 - all 

the above mentioned parameters are measured with errors, it would be easier and more accurate to 

apply a fitting procedure and find a function of best fit for measured pairs of values of distance and 

time instead of solving the equation of motion analytically.  

 

EQUIPMENT AND DATA ACQUISITION  
 

There are three setups for this experiment in MP 126.  

 

A vertical aluminum 3-meter track (1) has an 

electromagnet (2) mounted at the top. The electromagnet is 

connected to a power supply (3). Two photogates (4) are 

mounted on the track; their vertical position can be 

changed. The photogates are connected to a timer (5). The 

timer and the power supply are placed on the table by the 

track. 

You will suspend an object from 

the electromagnet above the upper photogate. A Release 

button on the power supply cuts the power to the magnet and 

drops the object. When the object falls through the upper 

start photogate, it starts the timer. When it falls through the 

lower stop photogate, it stops the timer. A container (6) on 

the floor catches the fallen object. 
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Clicking on the Reset button resets the timer. To place the object back onto the magnet, use a long 

wood meter stick with a small container at the top. 

 

There is more than one type of object available for use with the Free Fall apparatus: 

 

• A streamlined metal bob.  

• A light plastic sphere. A small metal plug is inserted so that it may be suspended from the magnet. 

In the actual experiment, the apparatus is so sensitive that repeating a measurement without moving 

the photogates will usually give values of the time that are slightly different. You will keep the 

position of the upper start photogate fixed throughout the experiment, so the initial speed of the 

object v0 remains constant. The start photogate is placed about 10 centimeters below the bottom of 

the streamlined bob when it is suspended by the magnet.  

You will move the position of the lower stop photogate to different positions to vary the distance s 

the object falls. The photogates are moved by unscrewing a large knob on the back, moving the gate 

to a new position, and screwing the knob back in. When screwing the knob in, make it only finger 

tight. It is easy to screw the knob in too tightly and damage the apparatus. You should place the 

lower stop photogate at 10 or so different positions. Be sure to make the range of distances s include 

the maximum value allowed by the apparatus. The minimum value of s should be about 10 cm. 

The value of the distance s is the distance between the 

light beams of the two photogates. Each photogate has a 

viewport which allows you to see the metal scale 

mounted on the track underneath. Since each photogate 

is constructed identically, reading the positions of each 

gate with the viewport is equivalent to determining the 

positions of the light beams of the two gates. 

You will need to know that the manufacturer of the metal 

scale quotes a precision of one part in 4000. 

For every position of the lower gate it is a good idea to 

take data for both the streamlined bob and the plastic 

sphere at once. This will save you some time and effort. 

When you are using the streamlined bob, it is almost impossible to hang it from the magnet without 

it oscillating. Be sure to wait until the oscillations completely stop before dropping the bob. 

Otherwise, at best your data will be corrupted. At worst, the bob can hit one of the photogates, 

possibly damaging it. 

You may be wondering why we use two photogates to start and stop the timer, instead of starting the 

timer when we turn off the current to the magnet and stopping the timer with a single photogate. The 

major problem is that when we turn off the current to an electromagnet the magnetic field does not 

go instantaneously to zero: the Free Fall apparatus is sufficiently sensitive that the time delay 

between turning off the current and the object beginning to fall will mess up the data. 
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DATA ANALYSIS 
 

Taking the data for this experiment is fairly straightforward. However, because of the high precision 

of the apparatus, careful analysis of your data will be necessary. Before you start the data analysis, 

organize your data in the most convenient way, which means actually, in a table with all measured 

values and their errors for two objects of different shape.  

 

You are expected to fit your data to a number of functions to find the best fit. You may use any 

fitting program. In MP 126, you can use a DataStudio fitter or a MATLAB fitter 

(http://www.math.ufl.edu/help/matlab-tutorial/ ).  

 

The simplest fit is given by a polynomial function. First function to study is given by equations (1) 

and (2). The goodness of this fit can show whether the drag is negligible in the experiment. 

 

Another reasonable approximation of the solution to the equations of motion is the third-order 

polynomial: 

(5) 

Thus if air resistance it not negligible, the third-order polynomial can fit your data: 

                                             (6) 

The fitter will return values and errors for the coefficients a0 , a1, a2 and a3. You may then determine 

the values and errors of s0, v0, g and α in Equation 5. 

You are encouraged to find any other physically reasonable and statistically good fit for your data. 

Give an explanation to your choice; obtain parameters g and α  with their errors. 

DataStudio Fit 

Click on the DataStudio icon. In this exercise, the DataStudio is not used for data acquisition; 

therefore choose the option “Enter Data”. Enter values from the table of measurements of your 

notebook into the table of DataStudio: time into the column X, and distance into the column Y. To 

the right-hand side you will see the plots on a graph screen. 

• Choose the function to fit the data on the graph. You can try polynomial fit of different 

orders or any other suitable function from the list. The result will always appear with the 

values of constant parameters of the function, their errors and the values of Mean Square 

Error and Root MSE. The linear fit will also show the value of r.  These values are given to 

choose the best fit.  

• Explain the meaning of appeared statistical criteria of goodness of the fit.  

• Compare the RMSE for different functions and write a conclusion about their goodness.  

• Investigate the behavior of each curve in the extended range beyond the measured values of 

the variables and give a conclusion on the found results. 

• Print out the graph that better matches experimental data. If the scale of the graph permits, 

show the error bars for measured values.  
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Excel Fit 

Very similar procedure can be done using Excel. Excel permits to fit data to polynomials, 

exponential functions, logarithmic functions and some others.  

• Click on the Excel icon on the screen of your computer and fill up the table with values of 

time intervals and distance traveled by the object in the free fall.  

• Above the table, find a button to create a graph. Choose a Scattered option and follow 

instructions of the program to complete graphing. You can save the diagram on the same 

sheet with the table or create a new page.  

• To see the function and parameters of the fit, find a button (Tools), which permits to draw a 

Trendline for the plots. You will then need to find how to set up the Format for the 

Trendline. Format has options that may be made active. You should make active the option 

Display equation on the chart and the option Display R-squared value on the chart. You may 

create a number of functions to fit data on one sheet.  

• Investigate the behavior of each curve in the extended range beyond the measured values of 

the variables and give a conclusion on the found results. 

• Print out the graph of the best fit, explain the criterion of goodness of the fit, and make a 

conclusion about the choice of the function. If the scale of the graph permits, show the error 

bars for measured values.  

Other Fitting Techniques 

More advanced fitting techniques, like MATLAB, not only fit the data but also take into account the 

errors of measured values which you could not include into the fitting with DataStudio and Excel. 

First, you will have to study the tutorial at http://www.math.ufl.edu/help/matlab-tutorial/ or get 

familiar with the contents of Help to know how to fit with MATLAB.  

The fitter will return a value called the chi-squared, χ
2
. It measures how closely the fitted values 

match the data. A smaller chi-squared means the fit is closer to the data. The value is weighted with 

one over the values of the errors in the data points. Thus, if the errors are large, the chi-squared is 

small; if the errors are small, the chi-squared is large. 

The degrees of freedom of a fit is the number of data points minus the number of parameters to 

which you are fitting. Our fitter reports this number too. 

The ideal value of the chi-squared is roughly equal to the number of degrees of freedom. If your chi-

squared is not on the order of the number of degrees of freedom, there are three possibilities: 

1. The model you are using is not appropriate. For example, if air resistance is significant and 

you are fitting distance versus time to only a second-order polynomial then the fit does not 

include the effects of air resistance. This would make the chi-squared too high. In this case 

you could try adding a third-order term to the polynomial.  

2. You have been too optimistic in assigning errors to your data.  

3. You have been too pessimistic in assigning errors to your data.  

Another tool for evaluating a fit involves the residuals of the fit. These are the numeric values of the 

difference between the fitted values and the actual data values. For a good fit, the residuals should be 

randomly distributed around zero. If the model you are using is not appropriate for the data, the 

residuals will often show systematic deviations from zero. 
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You should look over the material DATA FITTING TECHNIQUES in the Lab Manual for a more 

complete description on the chi-squared criterion interpretation. 

 

For this experiment, there is still another approach to determine if the effects of air resistance can be 

ignored. If you fit the distance versus time to a third-order polynomial, and the air resistance is 

negligible, the coefficient of the term for time to the third power will be zero within errors. In this 

case you can repeat the fit without including the third-order term. This is a general principle of least-

squares fitters: fitted values that are zero within errors should almost always be excluded from the fit. 

 

You can choose any other fitter; explain the criterion of the best fit that is used by the fitter; choose 

the function of the best fit and discuss the errors for the obtained parameters of the function  
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