THE ACOUSTIC INTERFEROMETER

REFERENCES

Reference to the theory of Michelson-type interferometers may be found in almost any standard text on optics (*e.g.*, Sears-Optics).

Chapter "Commonly Used Instruments" on The Oscilloscope of this Lab Manual

THE EXPERIMENT

The apparatus is the acoustic analogue of the Michelson optical interferometer. In our case, the beam splitter is a sheet of paper. The source is a "tweeter" (loud speaker) driven by an oscillator; it has a range from ~ 3 kHz to 10 kHz. Each time the movable reflector is displaced through $\frac{1}{2}\lambda$, so that the path length changes by λ , the interference in the recombined beam going to the receiver is the same.

Thus locating the points of minimum signal allows a measurement of λ , and hence the velocity of sound in air. At the lowest frequencies detectable some second harmonic is observed. This should be disregarded.

A simple way to locate the minima in the received signal is to make a plot of the amplitude of this signal as a function of the position of the moveable reflector. The frequency of the acoustic waves can be measured to great precision using a frequency counter (available at the **R**esource **C**entre). The velocity of sound in air can be determined to about 1% at the lower frequencies. Some second harmonics may be detected, but should be disregarded and will not interfere with the experiment.

The velocity of sound in a gas is given by $V = \sqrt{\frac{\gamma RT}{M}}$ where R is the gas constant,

T the absolute temperature, and γ is the ratio $\frac{C_p}{C_v}$ where C_p is the specific heat of the gas at

constant pressure, and C_{ν} is its specific heat at constant volume. M is the molecular weight.

Theoretical values of γ are:

- For a monatomic gas, $\frac{5}{3}$;
- For a diatomic gas of freely rotating molecules, $\frac{7}{5}$;
- For a diatomic gas of rotating and vibrating molecules, $\frac{9}{7}$.

Deduce what you can from experimental results remembering that air is approximately 21% O_2 , and 77% N_2 , the rest being 0.9% each of argon and water vapour, and traces of carbon dioxide and the other inert gases. Determine the effective value of $\frac{\gamma}{M}$ for air.