
THE WILBERFORCE PENDULUM 
 
 

For a 1 weight experiment do Part 1. For a 2 weight experiment do Part1 and Part 2. 
 
 
 
INTRODUCTION 
 
The Wilberforce pendulum 
(also known as a Wilberforce 
spring) is a spectacular 
example of a system in which 
coupling between types of 
oscillation results in complete 
transfer of energy between 
translational and rotational 
harmonic motion. This means 
that at one point in time the 
motion can be up and down 
translational motion without 
any rotation of the apparatus 
and at a later time the motion 
may be entirely rotational 
without any up and down 
movement. One can observe t
periodic interchange of ener
between the two types of 
oscillation. An int

he 
gy 

eractive 
animation of the interchange of 
energy in a system of coupled 
oscillators will help you 
appreciate this phenomenon. 
 
A complete description of the 
Wilberforce pendulum is given 
in R.E. Berg and T.S. Marshall, 
Wilberforce Pendulum 
Oscillations and Normal 
Modes, Am. J. Phys., 59, 32-38 
(1991). It is not necessary to 
read this reference since it may 
be difficult for a first year 
student but it would be useful if 
a complete mathematical 
description is desired. 

http://www.upscale.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/CoupledSHM/CoupledSHM.html
http://www.upscale.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/CoupledSHM/CoupledSHM.html
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefBerg2of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefBerg2of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefBerg2of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefBerg2of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefBerg2of8.pdf
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The simple treatment of a mass on the end of a spring that you learn in lectures says that 
when the mass is oscillating up and down the period should depend only on the particular 
spring used and the total mass on the end of the spring. The period for this massless 
spring is not applicable for the Wilberforce Spring:  i.e., 
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where M = mass of the bob, and k = spring constant (force/extension or F/x), because in 
this situation you cannot neglect the fact that the centre of mass of the spring is also 
oscillating.  In fact, for the uniform massy spring: 
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where M   = mass of the spring. sp

 
When the pendulum is undergoing rotational motion the period of the rotational 
oscillation depends on the particular spring and on the moment of inertia I of the mass 
(moveable masses plus frame system) on the end of the spring. Analogous to equation (2) 
for the massy spring with the frame and masses attached to the end, 
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where I  = moment of inertia of the spring and κ = torsion constant of the spring 
(torque/angular displacement or τ/θ). The moment of inertia of the mass 
is I where m is the mass of a moveable mass, d is the distance of 
each of the moveable masses from the centre,  is the moment of inertia of the frame and 

 comes from the parallel axis theorem and is a result of the fact that the masses are not 
point masses. Since I , I  I  are constants they can all be lumped into one constant I . 

Equation (3) becomes: 
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In this system, these two types of harmonic motion, translational and rotational, are not 
entirely independent; there is a slight coupling between them.  This results from the fact 
that the spring has a slight tendency to coil and uncoil as it is extended or compressed.  
The Wilberforce spring is thus an example of two weakly coupled resonant systems, 
other examples being the splitting of energy levels in the ammonia molecule, two simple 
pendulums of similar length with a spring joining the upper parts of their strings (see the 
animation in the first reference). Thus, the Wilberforce spring is a good way to study 
mechanical resonance in coupled systems. 
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THE EXPERIMENT 
 
Part 1 
 
Adjusting for Balance 
The metal scale is not located under the geometrical centre of the spring. If the centre of 
mass is not under the geometrical centre then as the mass rotates it will also start to 
swing. There is a cylindrical counterweight which allows you to compensate for this 
imbalance.   
a) Set the mass rotating and adjust the position of the counterweight to minimize 

swinging. 
b) Determine and record the distance of the counterweight from the end in case it is 

moved by other students before you do Part 2.  
 
Determining Resonance 
Resonance occurs when Trot is equal to Ttrans (if there were no coupling) and so you will 
first want to determine this condition. Note that the apparatus allows you to vary Trot, but 
not Ttrans.  
a) Measure Ttrans. 
b) Referring to equation (4), make a hand plot of T versus  for about 5 values of d 

and by interpolation determine the value of d

2
rot

2d
r for resonance. 

c) Note that this calculated value for dr may only be approximate and so with this value 
you may be only approaching resonance. As you approach resonance you will notice 
that for a while the amplitude of the translational motion will decrease and the 
amplitude of the rotational motion will increase and then a short time later the reverse 
process will occur. The closer you get to resonance the larger will be the period for 
the interchange of energy for the two types of oscillation. Start with your calculated 
approximation for dr and experimentally determine resonance exactly by making 
small adjustments of d, i.e. within the approximate range dr - 1mm  ≤ d ≤ dr + 1mm. 
At resonance, at one point in time the motion will be entirely translational without 
any rotation of the apparatus and at a later time the motion will be entirely rotational 
without any up and down movement. Also, at resonance the amplitudes of both 
rotation and translation will alternately be at a maximum. 

 
Energy Transfer at Resonance 
The energy of the translational motion can be determined from the linear amplitude and 
the rotational energy from the angular amplitude if the force constant k and the torsion 
constant κ are known. 
a) Measure the maximum linear and rotational amplitudes at resonance. Note that these 

measurements, and hence the energy calculations, are crude because of parallax (e.g. 
when looking down from above the rotating frame onto the protractor). 

b) From a plot of  versus dT2
rot

2 and determine the torsion constant κ using equation (4). 
c) Determine the force constant k by hanging the provided masses from the end of the 

spring with the special hook and pointer. 
d) Calculate the maximum translational and rotational energies and compare. 
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Part 2 
 
Some additional theory concerning normal modes is required for part 2. A complete but 
rather long (13 pages) explanation of normal modes is given in A.P. French, Vibrations 
and Waves, Chap. 5. Here is a much shorter explanation which should be sufficient. 
 
The motion that the Wilberforce pendulum experiences at any given time is a 
combination of both translational and rotational motion. Just as the position of an object 
can be treated as a vector i.e. (x, y) with vertical and horizontal components, we can 
represent a given state of motion of the Wilberforce pendulum as the vector (z, θ) with 
linear (vertical) and angular components. It turns out that any position that the pendulum 
might occupy during its motion is created by a linear combination of two such vectors. 
That is: (z, , where  both have vertical and angular components. 
Both of these vectors have their own frequency. At any given time, the position of the 
pendulum may be a multiple of either  alone or it may be a mixture of both. 
When the motion of the oscillator is just due to one of these vectors but not the other, it is 
said to be oscillating in a normal mode. Physically, this means that both types of motion 
occur with the same frequency, and they pass through their equilibrium positions at the 
same time. 
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If the system is set in motion in one of its normal (eigen) modes then it will continue to 
oscillate without any change in its translational or rotational amplitude (except that both 
amplitudes exponentially decay due to friction). The two normal modes have different 
frequencies, one higher and one lower than the resonant frequency. The difference in 
these two frequencies equals the beat frequency observed at resonance for energy transfer 
between translation and rotation.  
 

If equations (2) and (4) are rewritten as 
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 and I  are given by equations (2) and (4) respectively then the normal modes may 
be constructed (

effM eff

see the Berg reference in Am. J. Phys. above) by setting 
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where  and  are the initial amplitudes for translation and rotation respectively. 0z 0θ
 

http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefFrench3of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefFrench3of8.pdf
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The Normal Modes 
a) Ensure that the cylindrical counterweight is in the correct position as 

determined in Part 1. 
b) Determine . effM
c)  From your graph of  T  versus d  determine I  and hence I . 2

rot
2

0 eff

d) Adjust the system for resonance and measure the beat frequency or the 
frequency for the transfer of energy between the two types of motion. 

e) Using equation (5), determine the values of the amplitudes for a normal mode. 
Hint: choosing θ  and then determining  is experimentally convenient. 
Set the system in motion with these values and observe whether or not it is 
oscillating in a normal mode. 

π=0 0z

f) Measure the frequencies of the normal modes. Do your results agree with the 
value for the beat frequency observed in (d)? 

g) For the same θ , change z  and investigate the effect of this change on the 
motion. 

0 0

 
Checking Assumptions 
Equation (2), [and by analogy, equation (3)] is an approximation which becomes better as 
M becomes large compared to . Compare your measured value of TspM trans with the 
value calculated using (2). You can increase M by sliding a slotted mass onto the top of 
the Wilberforce pendulum. Is (2) a good approximation? 
 
Shear Modulus 

The shear modulus S is related to the spring constant k by the formula 4

3

r
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where r is the radius of the wire, R is the radius of the helical coil and N is the number of 
turns in the coil. Calculate the shear modulus for the material of the spring and suggest 
what the material might be by comparing your value to those you can find in various 
references. 
 
Young’s Modulus  
Young’s modulus Y is related to the torsion constant κ for the spring as a whole by the 

formula 4r
R8NY κ= . Calculate Young’s modulus for the material of the spring and 

suggest what the material might be by comparing your value to those you can find in 
various references. 
 
 
 
 
        (dh - 1974, jbv - 1990, jp - 2005) 
 
 
 

http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefShear4of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefShearSpringConstant5of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefYoung6of8.pdf
http://faraday.physics.utoronto.ca/IYearLab/WilberforceRefYoungKappa7of8.pdf

