Summary of the Spectra Experiment

This document summarises the Spectra Experiment. The full description of the experiment appears at:
http://www.upscale.utoronto.ca/IYearLab/Intros/Spectra/Spectra.html.

Apparatus Notes

- Align the cross hairs in the eyepiece to form an x , not $\mathrm{a}+$.
- Move the eyepiece in and out until the focus of the cross hairs is as sharp as possible.
- Adjust the slits to just resolve the two yellow lines in the Sodium Spectrum.

Calibration

Use the Helium lamp for calibration. Fit your data to the Hartmann dispersion relation:

$$
y=\frac{m}{\lambda-\lambda_{0}}+b
$$

λ_{0} is a constant for the spectrometer, and is supplied.

Hydrogen Spectrum

Measure the wavelengths of the lines in the Hydrogen spectrum to determine R_{H} where:

$$
\frac{1}{\lambda}=R_{H}\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right), n=3,4,5, \ldots
$$

Significance of \boldsymbol{R}_{H}

Calculate $h c R_{H}$, where h is Planck's constant, and c is the speed of light. Convert to electron-volts and compare to the ionization energy of atomic Hydrogen, which is 13.6 eV .

Use the equation in Preparatory Question 4 to discuss the significance of your result.

Gas Identification Sleuthing

Choose at least one of the unknowns and identify it.

Preparatory Questions

1. For the figures of the Scale and the Vernier in the full description of the experiment, what is the reading error? Note that the answer will depend on at least:
a. Your vision.
b. The quality of the computer monitor you are using.
c. The resolution of the figures themselves (90×90 pixels).

For the real apparatus, the reading error will depend on at least your vision and the quality of the engraving of the lines onto the spectrometer.
2. You measure the position of a spectral line, and get a scale reading of 9.26. You decide that the reading error is 0.05 . Thus:
$y=9.26 \pm 0.05$
Your calibration of the spectrometer using Equation 1 resulted in the values:
$b=4.1275 \pm 0.0032$
$m=1491.2 \pm 3.5 \mathrm{~nm}$
Your spectrometer has a value $\lambda_{0}=283.2 \pm 0.4 \mathrm{~nm}$.
a. What is the value and error of $(y-b)$? What is the dominant error in this value?
b. What is the value and error of $m /(y-b)$? What is the dominant error in this value?
c. What is the value and error of $\mathrm{m} /(\mathrm{y}-\mathrm{b})+\lambda_{0}$? What is the dominant error in this value? Note that this is the value of the wavelength.
Note that all the above numbers are fictitious. However, the principles of error propagation and especially learning to ignore non-dominant errors will be the same for your real data.
3. When you measure the Hydrogen spectrum, you will see only four or possibly five lines. However, the Balmer formula seems to predict an infinite number of lines corresponding to the infinite number of integers greater than or equal to 3 . Do you think those lines exist in the spectrum?
a. If your answer is Yes why don't you see them?
b. If your answer is No why don't they exist?
4. A simple variation of the Balmer equation is:
$\frac{1}{\lambda}=R_{H}\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right), n=2,4,5, \ldots$
Do you think these lines exist in the Hydrogen spectrum?
a. If your answer is Yes why don't you see them?
b. If your answer is No why don't they exist?

Spectral Wavelength Tables

1. Use the intensity indications with caution. They are only a general guide, and your lines may have different intensities.
2. The tables give most of the lines you will be able to see, and many that you won't be able to see if you are using a narrow slit width. However, they are not complete.
3. Lines separated by less than 1 nm will not be resolved if the slit is wide. If the slit is narrow, weak lines won't be seen.
4. You may assume that errors in the wavelengths are negligible. Typically wavelengths are known to 0.00001 nm or better.
5. A full set of wavelength tables is maintained by the U.S. National Institute for Standards and Technology at http://physics.nist.gov/cgi-bin/AtData/lines_form.

HELIUM

WAVELENGTH nm	RELATIVE INTENSITY	COLOUR
728.1	2	RED
706.5	4	RED
667.8	6	RED

656.0
587.6
504.8
501.6
492.2
485.9
471.3
447.1
443.8
438.8
416.9
414.4
412.1
402.6
396.5
388.9

1 RED
10 YELLOW
4 GREEN
6 GREEN
5 GREEN
2 GREEN
5 BLUE
6 BLUE
1 VIOLET
4 VIOLET
1 VIOLET
2 VIOLET
3 VIOLET
728.1
706.5
667.8
656.0
587.6
\square
.
504.8
501.6
492.2
485.9
471.3
416.9
414.4 412.1
402.6
447.1
443.8
438.8

ARGON			KRYPTON			
WAVELENGTH nm COLOUR	RELATIVE INTENSITY	COLOUR		WAVELENGTH nm		TIVE NSITY
574.0	2	GREEN	645.6		5	RED
565.0	3	GREEN	642.1		5	RED
560.7	3	GREEN	605.6		2	RED
557.3	3	GREEN	601.2		2	ORANGE
549.6	3	GREEN	599.4		2	ORANGE
522.1	2	GREEN	588.0		1	ORANGE
518.8	3	GREEN	587.1		10	ORANGE
516.2	3	GREEN	584.1		1	YELLOW
470.2	1	BLUE	583.3		1	YELLOW
462.8	1	BLUE	570.8		1	GREEN
459.6	1	BLUE	567.2		1	GREEN
452.2	1	VIOLET	565.0		1	GREEN
451.1	2	VIOLET	558.0		1	GREEN
433.5	2	VIOLET	557.0		10	GREEN
433.4	2	VIOLET	556.2		2	GREEN
430.0	3	VIOLET	450.2		5	VIOLET
426.6	3	VIOLET	446.4		5	VIOLET
425.9	3	VIOLET	445.4		5	VIOLET
420.1	2	VIOLET	440.0		2	VIOLET
419.8	2	VIOLET	437.6		5	VIOLET
416.4	3	VIOLET	436.3		4	VIOLET
415.9	2	VIOLET	432.0		3	VIOLET
431.9	2	VIOLET	427.4		5	VIOLET

Argon has many faint lines in the red and yellow which vary in intensity depending on the source and because of the confusion that this can lead to only wavelengths less than 580 nm are given. In this region there are a very large number of lines. Only relatively brighter ones are listed. Fainter ones may provide a haze in the background.

MERCURY		
WAVELENGTH nm	RELATIVE INTENSITY	COLOUR
708.2	1	RED
704.5	2	RED
690.7	1	RED
671.6	1	RED
658.5	1	RED
638.3	2	RED
623.4	2	RED
612.3	2	RED
607.3	2	ORANGE
602.4	2	ORANGE
601.7	1	ORANGE
589.0	1	YELLOW
579.1	8	YELLOW
577.0	6	YELLOW
567.7	1	YELLOW
567.6	1	YELLOW
546.1	10	GREEN
536.5	1	GREEN
520.5	1	GREEN
519.6	1	GREEN
512.1	1	GREEN
504.6	1	GREEN
502.6	1	GREEN
496.0	1	GREEN
491.6	5	BLUE
452.3	1	BLUE
435.8	6	VIOLET
434.8	2	VIOLET
433.9	1	VIOLET
421.2	1	VIOLET
420.6	1	VIOLET
415.7	1	VIOLET
407.8	5	VIOLET
414.7	5	VIOLET

XENON		
WAVELENGTH nm	RELATIVE INTENSITY	COLOUR
647.3	2	RED
647.0	3	RED
631.8	5	RED
620.1	1	RED
619.8	1	RED
618.2	3	RED
618.0	1	RED
617.8	2	RED
616.4	1	RED
593.4	2	ORANGE
593.1	1	ORANGE
589.5	2	ORANGE
587.5	1	ORANGE
582.5	2	YELLOW
582.4	3	YELLOW
571.6	1	YELLOW
569.7	1	YELLOW
569.6	1	YELLOW
546.0	1	GREEN
539.3	1	GREEN
502.8	3	GREEN
492.3	4	GREEN
491.7	4	GREEN
484.3	4	GREEN
483.0	4	GREEN
480.7	5	GREEN
479.3	1	BLUE
473.4	5	BLUE
469.7	4	BLUE
467.1	10	BLUE
462.4	5	BLUE
458.3	1	VIOLET
452.5	2	VIOLET
450.1	2	VIOLET

NEON		
WAVELENGTH nm	RELATIVE INTENSITY	COLOUR
724.5	1	RED
717.4	1	RED
703.2	5	RED
702.4	3	RED
692.9	6	RED
667.8	7	RED
659.9	7	RED
653.3	7	RED
650.7	7	RED
609.6	5	ORANGE
607.4	7	ORANGE
603.0	5	ORANGE
596.5	4	ORANGE
588.2	6	YELLOW
585.2	10	YELLOW
540.1	5	GREEN

Many orange and yellow lines have been omitted as well as all lines of wavelength less than 540 nm (hundreds). Most of these are faint but some overlap gives the appearance of bright lines.

Since nitrogen is a molecule, the spectrum consists of bands rather than lines. This is due to rotation of the molecules. In the visible the most prominent structure is the First Positive series with about 30 regular spaced bands in the region 500700 nm . Only the band heads of the Second Positive series are tabled above. The bands trail off to shorter wavelengths. As indicated by the relative intensities on a scale of 10 , the Second Positive series is less intense than the First Positive series.

