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 HEAT CAPACITY 
 
REFERENCE Noakes, Textbook of Heat. Copies of the relevant sections are available at 

the Resource Centre. 
 
INTRODUCTION 

 
Definitions 
The purpose of this experiment is to 
determine the specific heat of two metal 
blocks.  
In one of these measurements you will also 
investigate the use of Newton's Law of 
Cooling to calculate a cooling correction.  
 
When a body of mass M at temperature T1 
receives an amount of heat (or energy) Q, its 
temperature may increase from T1 to T2. 
 
The heat capacity C of a body is the amount 
of heat required to raise its temperature by one 
(Kelvin) degree: 
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By dividing out the mass, one gets the specific heat capacity c or simply the specific heat: 
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The units of specific heat in SI are J / kg ˚C.  
Historically, “specific” means “referred to water” and the measurements done in this experiment 
are referred to the specific heat of water.  Thus, in this experiment we use as the unit of heat, not 
the conventional SI unit of energy, but rather the calorie.  The calorie is defined as the heat 
required to increase the temperature of 1 gram of water from 14.5EC to 15.5EC. This definition 
makes the specific heat capacity of water equal to unity. 
 
THE METHOD  
 
To determine the specific heat capacity of a substance, the method of mixtures is often used.  A 
vessel, called calorimeter, of known specific heat capacity Sc and mass mc is partially filled with 
a mass mw of water at a temperature T1 and then mounted in a suitable manner so that it is 
thermally insulated from the outside world.   
A mass M of the substance of unknown specific heat capacity c is heated to a higher temperature 
Tb (usually in boiling water) and then quickly transferred to the calorimeter.  The temperature of 
the calorimeter and the water contained quickly rises to a value T2. It then slowly begins to fall 
as heat is lost to the room. If all the masses are measured in grams, the temperatures in degrees 
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Celsius and the specific heat capacities in calories per gram per degree Celsius, the block of 
substance has thus given Mc(Tb - T2) calories of heat to the calorimeter and the contained water. 
 If no losses occur, this must be equal to the heat gained by them, which is (mcSc + mw)(T2 - T1).   
   
Thus:                                   Mc(Tb - T2) = (mcSc + mw)(T2 - T1)       (2)  
                                       
and the specific heat c can be determined.   
The calorimeter is made of copper and Sc = 0.093  cal g-1 EC-1. 
 
Experiment 1 
Arrange the calorimeter with the inner vessel filled with enough water to cover the metal block. 
Try it before you heat the block. Measure the initial temperature T1. Do not add anything 
between the inner and the outer vessels. The outer vessel acts as a thermal shield. The air 
between the two is the insulator.  
Heat a metal block in boiling water (temperature Tb) and transfer it quickly to the calorimeter.  
The final temperature will be T2.  
Consider carefully the systematic errors present in this experiment.  
Determine the specific heat of one of the metal blocks, using Equation 2.   
What temperature, or temperature range, does your value correspond to? 
 
Experiment 2 - The cooling correction 
In the second part of the experiment you will measure the specific heat of the second block by 
using the same method, but this time you will allow the cooling effect to be large enough to 
study. The derivation in (2) above neglects the heat lost to the surroundings when the 
temperature of the calorimeter + water + metal block rises above room temperature.  
The method is based on Newton's Law of Cooling, which assumes that the rate of loss of heat to 
the surroundings is proportional to the temperature excess above the surroundings:     
 
    (3) 
 
where  Q is the quantity of heat,  
 t is the time,   
 dQ/dt is the rate of heat loss (how much heat is lost per unit time),  
 T and Troom  are the temperatures of the cooling body and of the surroundings, and 
 k is a constant of proportionality. 
The experiment should be performed using the method of mixtures, under conditions where heat 
exchange with the room is deliberately made large, so that the cooling correction will be fairly 
conspicuous.  This is achieved by placing the inner part of the calorimeter out in the open to 
increase heat losses to the air around it. 
Measure the temperature of the calorimeter at the time of transfer, t1.   
Read the temperature at frequent intervals; regular 15 sec intervals are recommended.  These 
measurements should be continued until a maximum in the temperature has been passed and the 
temperature has fallen again about 1EC.   
 
 

) T - (T k = 
dt
dQ

room



 
 

 
 HEAT CAPACITY 

- 30- 

Plot temperature vs. time on graph paper.  On the graph (indicated in Figure 1), select a time t2 
at which you would expect the metal block and the liquid in the calorimeter to have more or less 
reached thermal equilibrium so that the whole system is then cooling as a unit.   
The amount of heat loss between t2 and t3 (t3> t2) can be determined by integrating Equation (3) 
to yield:   

dt ) T - T (  k = Q room

t

t

3

2

∫                                          (4) 

The right hand side of this equation is just the area under the curve of (T - Troom) versus t, 
denoted by A2 in Figure 1.   
The left hand side (Q), the heat lost by cooling in the interval (t3 - t2) , is proportional to ∆T3 , the 
drop in temperature during this time interval. Remember that Q is equal to the product of the 
specific heat capacity of the cooling body, its mass, and the drop in temperature. 
Thus we obtain ∆T3 = kN A2, where kN is another constant.   
Similarly, the drop in temperature due to cooling in the time interval between t = t1 and t = t2, is 
given by ∆T2 = kN A1 (note that, since the mechanism by which cooling takes place is the same 
for times between t1 and t2 and between t2 and t3 , the constant of proportionality will be the same 
for both regions).   
Finally we have: ∆T2 /∆T3 = A1/A2.   
Thus, if T2 is the temperature observed at time t2, the temperature which the calorimeter and its 
contents would have reached had no heat been lost by cooling is T2 + ∆T2, and equation (2) 
should be correspondingly corrected.  A1 and A2 are most conveniently measured by counting 
squares on graph paper. 
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Correction for the heat capacity of the thermometer:   
The thermometer you use in this experiment is a partial immersion model. Insert it exactly to the 
line. The liquid this thermometer uses is kerosene. 
If the specific heat capacities of kerosene and of glass are expressed as calories per cm3 per EC, 
they are: 0.57 cal/(cm3EC) for kerosene and  0.45 cal/(cm3EC) for glass.   
Assume that the thermometer’s bulb is mainly kerosene and has a volume V1. The column (up to 
the line) is mainly glass and has a volume V2.  
Measure V1 with the aid of a 10 cm3 graduated cylinder, by measuring the water volume the bulb 
displaces.  
Measure the column diameter and length (up to the line) and calculate V2.  
The amount of heat absorbed by the thermometer when immersed in the calorimeter can now be 
expressed as: 
   )(45.0)(57.0 122121 TTVTTVQt −+−=    (5) 
This quantity of heat (Qt) will also correct equation (2). 

 
 
Please dispose of any water in the sink! 
 
 

(Revised: Ruxandra M. Serbanescu – 2004. Previous versions of this guide sheet were written by Tony Key in 1995 
-1998) 
 
Preparatory Questions 
Note:  We hope that the following questions will guide you in your preparation for the experiment you are about to 

perform.  They are not meant to be particularly testing, nor do they contain any Atricks@.  Once you have 
answered them, you should be in a good position to embark on the experiment. 

1. The SI unit of heat is the Joule.  How is that related to the calorie? 
2. What is your best estimate of the reading error in the thermometer you will use? 
3. You read on the package of your favorite junk food that it contains 250 calories per 

serving.  Are these the same kind of calories that you will be measuring in this 
experiment? 

4. The derivation of equation (2) assumes that there was no heat loss in the transfer of the 
heated block to the cooler water.  If this equation were used to analyze the data from an 
experiment in which the heat losses were, in fact, significant, what would be the value of 
the specific heat obtained?  

5. Two bodies, made of different materials and having different specific heats, but of equal 
mass and identical shape, are heated up.  They are then allowed to cool down.  Assuming 
that the constant k is independent of the material the bodies are made of, which body 
would you expect to cool down more quickly? 
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 THERMAL EXPANSION OF A SOLID 
 

The complete, interactive guide sheet of this experiment can be found at 
http://faraday.physics.utoronto.ca/IYearLab/Intros/ThermalExpans/ThermalExpans.html 
 
 ABSTRACT 
 
Everybody knows that liquid thermometers make use of thermal expansion. The volume of a liquid 

 increases as temperature increases. Thermal expansion plays an important role in numerous 
 applications: joints included in buildings, highways, railroad tracks, and bridges compensate changes in 
 dimensions with temperature variations. 

 
 Most solids expand on heating because atomic motion becomes larger and the average separation 
 between atoms or molecules changes. Suppose an object has an initial length Li along some direction at 
 some temperature. The length increases by ∆L for a change in temperature ∆T. When ∆T is small 
 enough, ∆L is proportional to ∆T and Li 

 
 
The proportionality constant α is called average coefficient of linear expansion. 
 
In this experiment, you will investigate the thermal expansion for two metal rods. You will prove that 
thermal expansion is a linear phenomenon and calculate the average coefficient α for the two metals. 

TLL i∆=∆ α
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 VAPOUR PRESSURE OF WATER 
 
REFERENCES 
 
G.R. Noakes. New Intermediate Physics. Copies are available at the Resource Centre. 
 
THE EXPERIMENT 

 
The purpose of this experiment is to study the variation 
of the vapour pressure of water between about 300K 
and 373K.  The apparatus is shown schematically in the 
figure.  The bulb in which the water vapour is contained 
has been evacuated of all gases and then filled with 
mercury and pure water.  The pressure of the water 
vapour causes the mercury to rise up in the tube.  (The 
height h of the column of mercury is  a convenient unit 
for the vapour pressure, though, of course, it needs some 
units conversion to be expressed in SI units.)  The bulb 
is immersed in a water bath whose temperature can be 
varied and measured. 
 
The procedure is simply to measure the height h as a 
function of the temperature T of the water in the bulb.  
This temperature can be quite different from the 
temperature of the water bath unless a) they are in good 
thermal contact, and b) sufficient time is allowed for the  

system to reach thermal equilibrium.  Therefore it is 
very important that the water in the water bath 
completely covers the bulb, and that thermal 
equilibrium has been reached before h and T are 
measured.  How can you tell when thermal equilibrium 
has been reached? 
 
The measurement of h requires some thought.  There is 
a scale against which the top of the mercury column 
can be measured.  However, the scale does not extend 
down to the level of the mercury in the bulb.  In 
addition this lower point of the mercury column is not 
fixed, but will change slightly as the height h changes.  
Study the apparatus and be sure you know how to 
measure h correctly and as precisely as possible.  Then 
check with your demonstrator that your method is the 
best available. 
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The analysis of the data of vapour pressure as a function of 
temperature is not based on any exact theory.  But a reasonable 
approximation is provided by integrating the Clapeyron equation: 

 
)V - VT(

 = 
dT
dp

v l

l  

where T is the temperature in Kelvin, dp is a small change in the 
vapour pressure due to a temperature change dT (i.e., the slope of 
the vapour pressure - temperature curve), Vv is the volume per mole 
of the vapour phase, vR is the volume per  mole of the liquid phase, so that (Vv - VR) is the change in 
the volume per mole when water evaporates into a vapour, and  R is the latent heat per mole (also 
called the Enthalpy or Heat of Vapourisation) in the transition from a liquid phase to a vapour phase, 
i.e., the heat per mole absorbed in that transition. 
 
By making two reasonable approximations, 
                      
(i)   (V v -  VR) • Vv the volume per  mole of  the vapour;  and  (ii)    pVv = pV/n = RT (ideal gas law) 
 

we obtain  

p
RT

 = 
dT
dp

2
l  or dT

RT
 = 

p
dp

2

l  

If we now make the important approximation that R is independent of temperature, this equation can 
be integrated immediately to give: 

 







RT
- p = p o
lexp  

where  p0  is a constant of integration and R is the gas constant.  This equation should be valid in the 
temperature range this experiment is performed. Thus a plot of ln (p) versus 1/T will be a straight 
line, the slope of which will give a value for R. Remember that T should be in Kelvin! You should 
compare your value with that given in the Handbook of Chemistry and Physics. 
 
In determining the error in your value of R, it is important to consider the possible systematic errors 
this experiment contains. For example: 
 
! Is it necessary to correct for the pressure due to the liquid water in the bulb which rests on 

top of the mercury surface in the bulb? 
! Is the water vapour at the same temperature as the water bath?  Or does the mercury column 

conduct heat from the bulb at a significant rate? 
! Should the values of h be corrected for the thermal expansion of the mercury and glass*? 

* The coefficient of volume expansion of mercury, α . 0.181 H 10-3 deg-1 
The coefficient of volume expansion of glass, β . 8.5 H 10-6 deg-1. 

! Does the vapour pressure of mercury produce a significant error? 
 
As in any other experiment, an effort should be made to estimate these errors quantitatively in order 
to decide whether any of them are significant.    (revised jbv - 89; tk - 96) 
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Preparatory Questions. 
 
Note:  We hope that the following questions will guide you in your preparation for the experiment you are about to 

perform. They are not meant to be particularly testing, nor do they contain any “tricks”. Once you have 
answered them, you should be in a good position to embark on the experiment. 

 
 
1. Write down the equation for the pressure, P, at a point X, situated a distance of h below the 

surface of a liquid of density ρ if the surface of the liquid is at zero pressure. Hint for those 
who haven’t seen this before: the pressure is a force per unit area.  Calculate the force that 
a column of height h and cross sectional area A would exert at point X due to its weight; 
then divide by A to get the pressure.  

 
2. What might be the effect on your experimental results if the water in the water bath does not 

completely cover the water and vapour mixture in the bulb? 
 
3. As the pressure increases, the mercury will rise up the tube and the level of the reservoir will 

drop. How will you ensure that you measure the correct value of h, the height between the 
meniscus of the mercury in the tube and the top of the reservoir? 

 
4. For the experimental results to make sense, the temperature of the water and its vapour, the 

mercury and the water bath must be all the same when a measurement is taken. Suggest a 
procedure that will ensure that this is actually the case.  

 
5. If the experimental error in the temperature, T, is ∆T, what it the error in 1/T?  If the error in 

your value of pressure is ∆p, what is the value of the error in ln(p) ? 
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ABSOLUTE ZERO 

INTRODUCTION 
 
As you may know, for an ideal gas at 
constant volume, the relation between 
its pressure p and its temperature t, 
measured in C0 , is given by: 
 

bpmt +=  (1) 
 
Thus a plot of t versus p will be a 
straight line with slope m and 
intercept b. 
 
 
This relation, called Charles’ Law, is 

approximately true for all gases provided the pressure is reasonably small. 
 
Different gases will have different values for the slope. However, the extrapolated value 
of the temperature when the pressure is zero, the intercept, turns out to be the same for all 
gases. Since the pressure cannot have a value less than zero, this temperature is the 
minimum value any gas (or any object) may have, and is called Absolute Zero. This in 
turn defines an absolute temperature scale, the Kelvin. 
 

ZeroAbsoluteCtKelvin +≡ )(0    (2) 
 
In this experiment you will find the value of Absolute Zero by taking temperature, 
pressure data for a fixed quantity of gas held at constant volume in a Pyrex glass bulb. 
 
In everything that follows, temperatures measured in Kelvin are given the symbol T, 
while temperatures in Celsius are indicated by t. 

THE EXPERIMENT 
 
You will measure the pressure and temperature of the gas in the bulb for temperatures 
from 0 C0  to about 100 C0 . Note that the volume of the gas is at least approximately 
constant; the constancy of the volume is explored further in the ANALYSIS section 
below. 
 
The bulb is placed in a bath of water, whose temperature is controlled by adding ice to 
the bath or heating it with the hot plate. The temperature of the bath is measured with the 
supplied thermometer. 
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The thermometer is a Partial Immersion type, which means that it will give accurate 
readings only if it is immersed in the bath to the line indicated on the stem near the bulb, 
with the stem remaining at room temperature. Pay particular attention to the measured 
temperatures when the bath is a mixture of water and melting ice and when the water in 
the bath is boiling. 
 
The manometer you will use to measure the pressure of the gas in the glass bulb has a 
specified accuracy of “± 0.25% of the reading ± 5 digits”. The last part of the 
specification means that the last digit read is uncertain by ± 5. For example, if the 
manometer reads: 

737.6 mm of mercury (Torr) 
 

then 0.25% of the reading is 1.8 Torr. Thus the total error of accuracy is 1.8 + 0.5 Torr, 
and the pressure is: 

737.6 ± 2.3 Torr 
 
The most difficult part of the experimental procedure is manipulating the hot plate 
controls so that the temperature of the bath remains constant long enough for the 
temperature of the gas in the bulb to equal the temperature of the bath as measured by the 
thermometer. When equilibrium is achieved the pressure will be constant in time. The 
difficulty of achieving this condition will be one factor in determining the errors you 
should assign to your measurements. 
 
There are three data points where thermal equilibrium is easy to achieve. One is when the 
bath is at room temperature, a second is when the bath is a mixture of water and melting 
ice, and the third is when the water in the bath is boiling. 
 
Measure atmospheric pressure with the barometer in MP125 or MP126 when you begin 
to take data and again when you are finished. Note the room temperature with the 
thermometer beside the barometer for both measurements. 
 

ANALYSIS 
 
The first, most simple analysis of the data will involve fitting the temperature versus 
pressure data to a straight line. The intercept of the fit is your experimental value of 
Absolute Zero. As a first term Core experiment you should also calibrate the 
thermometer as described below. 
 
As a second term experiment, the other calibrations described below may also be 
applied to your data. 
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Calibration of the Thermometer 
 
You may calibrate the thermometer using the measured temperatures for boiling water 
and for a mixture of water and melting ice. 
 
The boiling point of water goes down as atmospheric pressure decreases. Thus boiling 
water on a mountaintop has a lower temperature than boiling water at sea level. The 
boiling point Bt , in Celsius, at a given atmospheric pressure CH  is given by: 
 

)760(037.00.100 −+= CB Ht    (3) 
 

CH  is measured in mm of mercury (Torr) at 0 Celsius. This is the reading you obtained 
from the barometer adjusted to 0 Celsius using the table pasted alongside the barometer. 
The factor 0.037 is an experimentally determined number for the change in the boiling 
point of water per Torr difference in pressure between the observed pressure and the 
Standard Pressure. 
 
You may assume that the actual temperature of the water and melting ice is 0 Celsius 
provided equilibrium has been achieved. 
 
Is there an appreciable difference between the expected values of the boiling point and 
the freezing point of water, and the values you actually read on the thermometer?  If so, 
you may need to correct your temperature values.  It is reasonable to assume a linear 
correction and you should devise one that gives you the correct values at both calibration 
points. 
 

Volume Measurement 
 
In the experiment you will have noticed that not all of the trapped air is heated when you 
heat the water around the bulb. The air in the tubes connecting the bulb to the manometer 
presumably stays close to room temperature.  To take this effect into account we do the 
following calculation. 
 
Suppose there are n moles of trapped air, n1 being in the heated region itself and n 2 being 
in the connecting tube, most of which is approximately at room temperature.  As the air is 
heated, it becomes less dense in the bulb relative to the tube, and therefore n1 decreases 
and n2 increases, but n remains constant: 

 
21 nnn +=      (4) 

 

For the bulb, with volume 1V :  
pV1 = n1RT     (5) 
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whereas for the connecting volume 2V : 
 

RRTnpV 22 =      (6) 

 
Here RT  is the room temperature in Kelvin. We eliminate 1n  and 2n : 
 

nRT
T

TpVpV
R

=+ 2
1     (7) 

 
This looks like the normal ideal gas law except for the second term on the left hand side, 
which should be smaller than the other two terms. 
 
Rearranging, we obtain: 

RTV
V

pV
nR

T 1

2

1

11 −=     (8) 

 
However we must consider one more correction. 
 

Expansion of the Pyrex Glass Bulb 
 
Given the volume RV  at room temperature RT , the coefficient of volume expansion β  
gives the volume V at temperature T according to: 
 

)](1[ RR TTVV −+= β    (9) 
 

Using this to correct for the volume of the bulb 1V , Equation 8 becomes 
 

)1(
1
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1
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T β
β

β −
+

−
−

=   (10) 

 
Thus a plot of 1/T versus 1/p will be a straight line if the ideal gas law holds over the 
temperature range explored in this experiment. 
 
Further, the general form Equation 10 is: 

δα −=
pT
11      (11) 

 
where: 

)1(1 RR TV
nR
β

α
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=     (12a) 
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This may be rewritten by rearranging and using a binomial expansion to get: 
 





 ++++=








−

= K32 )()(1
/1

1 pppp
p

pT
α
δ

α
δ

α
δ

ααδα
  (13) 

 
 
If αδ <<  this becomes: 

2
2

1 ppT
α
δ

α
+≅     (14) 

 
Since T, the absolute temperature, is the temperature t in Celsius minus the value of 
Absolute Zero, this equation can be written as: 
 

bppt ++= 2
2

1
α
δ

α
    (15a) 

or: 

)1( 2
2 pptb

α
δ

α
+−=    (15b) 

 
where b is the value of Absolute Zero. 
 
Fitting t versus p to a second order polynomial and using Equation 15a to find Absolute 
Zero is unlikely to give a good result. This is in part because the fitter will fit to values of 
α/1  and 2/δα , although they are not free parameters but instead are numbers that you 

may calculate. 
 
Thus, you should use Equation 15b to determine the value of b by: 
• Estimating 1V , 2V , and n and calculating α  and δ . Note that this will use your first, 

simple, determination for Absolute Zero in order to find RT . You should be very 
careful about units for the pressure, the gas constant R, etc. 

• Calculating b for each of your data points. 
• Averaging the result of each calculation of b to give a final value of Absolute Zero. 

CONSTANTS 
Density of mercury at 0 CO  = 13.5951 3g/cm  
Coefficient of volume expansion of Pyrex glass 16 deg103.3 −−×=β  
1 mole of any gas occupies 22.4 liters at STP (Standard Temperature and Pressure). 
Universal gas constant R = 8.31 J/(mole K) 
1 mole = 1 gram molecular weight = 310−  kg molecular weight 
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PREPARATORY QUESTIONS 
1. Above we refer to pressures in units of Torr, 

which is the pressure exerted by a cylinder 
of mercury, as shown to the right, of height 
L = 1 mm. Assume the area A of the 
cylinder is 1 square meter. What is that 
pressure in units of Pascals = 
Newton/meter 2  exerted by the column of mercury? 

2. Does your answer to Question 1 depend on the area A of the column? Why? Does it 
depend on the column being circular? Why? 

3. At what depth below the surface of a lake will you experience a pressure twice the 
pressure you experience on the surface? 

4. If you are on top of a mountain where atmospheric pressure is 740 Torr, what is the 
boiling point of water? The answer to this question explains why you can’t make a 
good cup of tea on top of a mountain. 

5. The temperature of a gas is a measure of the average kinetic energy of the molecules 
of the gas. What is the average kinetic energy of the gas molecules when the 
temperature of the gas is 0 Kelvin? 

6. Is it meaningful to talk about the temperature of a perfect vacuum? This is potentially 
a somewhat subtle question. 

REFERENCE 
Almost any first year university level physics textbook. 
 

AUTHORS 
This Guide Sheet was written by David M. Harrison, June 2001. The part on calibrations 
and corrections is based on material written by Derek A.L. in 1990. Milton From and 
Tony Key contributed to previous versions of the Guide Sheet in 1995 and 1996, 1998 
respectively. 


