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                           CURVED AIR TRACK 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/cairtrac.pdf 

 
 
This experiment is an adaptation of The Air Track to simple harmonic motion. This air track is 
shaped as an arc of a circle of large radius in the vertical plane. Thus a glider on the track 
behaves like the bob of a simple pendulum of large radius and long period.  This enables simple 
harmonic motion to be “slowed down” for more leisurely observation. Moreover, any object 
placed on the moving glider is situated in an accelerated frame of reference. The experiment thus 
allows simple observation of motion of objects in such a frame. After qualitatively observing the 
motion of the glider on the track, you can measure the radius of curvature of the track by raising 
an end by a known amount and then observing how much the equilibrium position changes. 
 
Once you know the radius of curvature, determining the period of oscillation gives you enough 
information to measure the acceleration due to gravity g. You may observe what happens to 
objects placed on the moving glider. 
 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. 
R.A. Serway. Physics for Scientists and Engineers, 4th edition. Saunders College Publ., 1996. 
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THE AIR TABLE 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/airtable.pdf 
  

 
The air table provides a surface where pucks can move almost without friction.  Hence, it can be used 
to study almost any sort of two-dimensional phenomenon where friction is an unwanted effect, a 
simple example being the elastic collision of two pucks. 
 
Many of the one dimensional experiments described in The Air Track write-up (see this lab manual) 
can be adapted to the air table and done in two dimensions. Look at that experiment for ideas and then 
discuss specific plans with your demonstrator. 
 
The equipment consists of an air table, pucks (magnetic or regular in various sizes), masses, pulleys, 
velcro collars, camera, and VCR plus monitor. 
 
Experiments: The setup will record positions at given times, which one can use to deduce velocities 
and accelerations. Together with measurements of mass and dimensions, this should be enough to test 
many principles of mechanics. 
 
References 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 4th edition, vol. 1. Wiley, 1993. 
R.A. Serway. Physics for Scientists and Engineers, 4th edition. Saunders College Publ., 1996. 
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 THE FLYWHEEL 
 
REFERENCES 
 

D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. 
 
 INTRODUCTION 

 
This experiment is an introduction to some basic 
concepts of rotational dynamics.  A fairly realistic 
analysis of the motion of a flywheel can be made, 
assuming only that the net frictional torque on a 
rotating flywheel is constant.  In performing this 
experiment, you will develop understanding of:   
 
! rotational dynamics; 
! evaluation of errors in measurements 
that may be difficult to obtain; 
! estimation of a geometrically calculated 
quantity using simplified models.   
 
 

THEORY 
 
The basic equations for angular motion can often be obtained simply from those for linear 
motion by making the following substitutions: 

 
Linear variables 

 
Y 

 
Angular variables  

 Force, F
r

 Y Torque, τr  
Mass, m Y Moment of Inertia, I  

Velocity,  vr  Y Angular velocity, ωr  
Momentum,  pr  Y Angular Momentum, L

r
 

Acceleration, ar  Y Angular acceleration,  αr  
 

N.B.  The analogy needs to be treated with caution.  I is not a constant property of the body, as is 
mass, since its value depends on the axis around which it is measured. 

 

Thus Newton=s Law, a m = 
dt

)v (m d = 
dt

pd = F r
rrr

, becomes: αωτ r
rr

r  I = 
dt

) (I d = 
dt
Ld = . 

 
In words, the angular acceleration of a body is directly proportional to the torque applied to it 
and inversely proportional to the moment of inertia of the body about the relevant axis. 
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The moment of inertia, I, is determined by imagining that the body is divided into a number of 
infinitesimal elements of mass δmi each at a distance ri  from the axis of rotation.  The moment 
of inertia I about this axis is given by the sum of all the products ( δmi ri

2 ) calculated for each 
element, I =  Σi ( δmi ri

2 ) . If the body has a simple geometrical figure, e.g. a sphere, cylinder, 
etc., I can be readily calculated and results are tabulated for such bodies in the CRC Handbook  
(available in the lab) or in first year physics texts (see References).   
The torque τr  of a force about an axis is given by the cross-product of the force F

r
 and the 

distance from the axis of rotation rr ,  i.e.  Fr
rr × .  (Think of 

opening a door. You are applying a torque whose 
magnitude equals the product of the force you apply and 
the distance from your hand to the axis of the door.) 
 
To summarize:  If a body is free to rotate about a fixed 
axis, then a torqueτr  is required to change the rotational 
motion of the body and an angular acceleration αr  will 
result.  The angular acceleration is proportional to the net 
torque (and exists only during the time that the torque acts) 
and is given by τr  = Iαr .  I is a constant of the body, 
known as its Moment of Inertia about the specified axis of 
rotation; it depends not only on mass but also on the 
distribution of mass. 
 
  THE EXPERIMENT   
 
In this experiment, a flywheel is mounted so that torques can be applied to it by hanging a mass 
M from the free end of a string, the remainder of which is wrapped around the axle. The torque 
due to the weight is  τ = Tr where T is the tension in the string and r the radius of the axle. 
Because the bearings in the flywheel are not frictionless, there will be a frictional torque exerted 
at the bearings equal to  τr f  which will oppose the motion of the flywheel.  Suppose that the 
string is wrapped around the axle N1 times and that a mass M is suspended from its free end and 
the system is released at time t = 0. The flywheel then is given an angular acceleration, α1, and 
the mass M accelerates downwards with an acceleration equal to rα1.   
 
If T is the tension in the string, then the net torque exerted on the flywheel is: 
 
 Tr - τf = Iα1 
The net force on the mass M is 
 Mg - T = Ma = Mrα1 
 
Eliminating T one finds 

 I
 - )

g
r - (1Mgr  

I
1 f1 ταα  = 1    (1) 
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It may be noticed that if the frictional torque, τf , is constant, then the angular acceleration of the 
system, α1, is also  constant. With this assumption α1 may be measured experimentally; if t1 is 
the time taken for the string to unwind  N1 turns from the axle (i.e. the time taken for the mass M 
to drop off the axle), then the flywheel will have rotated through an angle 2πN1 radians in the 
time t1 and since θ1 = α1t1

2/2,  
 
 α1 = 4πN1/t1

2    (2) 
 
If the flywheel is rotating without an applied torque it will decelerate under the action of the 
frictional torque alone. Under this condition, Equation 1 becomes  
 α2 = - τf /I    (3) 
 
Then if it takes a time t2 to come to rest, and in this time turns through N 2   revolutions, then the 
deceleration α2 (assuming constant frictional torque) is given by  
 α2 = - 4πN2 /t2

2    (4) 
 
If the frictional torque in the bearings is Areasonably@ constant, the value of τf obtained by 
plotting (1) should be consistent with the value obtained from Equation 3. The quantity I is by 
definition a constant and must be the same in Equations 1 and 3. Thus, Equation 3 may be used 
to independently determine τf/I.  
 
POINTS TO CONSIDER   
 
In this experiment you are essentially investigating Equations 1 and 3 using a massive system 
with little friction.   
 
! Obtain data over as wide a range of values of applied torque as possible (torques up to 0.4 
N-m are easily attainable).   Also take some data at different values of r. 
  
! Are you sure you counted revolutions correctly?  What methods of measurement did you use?  
   
! Consider the effect, if any of the thread you use to suspend the weights from the flywheel. 
   
! Equation 1 suggests that fitting of α1 versus Mgr(1-rα1/g) should be useful.  At first sight the 
error calculation may appear to be a little daunting; however a little thought will convince you 
that the error in the latter term has only two significant contributions.   
 
    N.B.  If you use Faraday to do your fit, we strongly recommended that you use the 

massage and recalc facility to calculate any quantities that have long algebraic 
expressions. If you do the calculation of these quantities at the fit stage, a computer 
glitch often causes printing problems. 

 
! You may find that the graphing of the data is best done on the computer.   
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! The derivation of Equations 1 and 3 assumes constant frictional torque, independent of mass 
M and angular speed. Does your data justify this assumption? How would a variation in 
frictional torque affect your graphs?    
 
! You might try to estimate the value of the moment of inertia I for your flywheel by 
considering a simplified model of its geometry and by finding expressions for I (rings, cylinders, 
rods, etc.).  The material of your flywheel is steel and the total mass of its moving parts is 6.5 kg. 
 A rough estimate of the mass of the flywheel contained in the outer cylinder can be made by 
measuring the approximate volume of the different parts.      
(dh -- 1983, jv -- 1988, tk -- 1995,97,98) 
 
Preparatory Questions. 
 
Note:  We hope that the following questions will guide you in your preparation for the experiment you 

are about to perform.  They are not meant to be particularly testing, nor do they contain any 
“tricks”.  Once you have answered them, you should be in a good position to embark on the 
experiment. 

 
1. In order to calculate the angular accelerations α1 and α2 using Equations 2 and 4, you 

need a measurement of the time, t, it takes for N revolutions.  Obviously the errors in t 
and N are closely related.   Think about a simple approximate way to take account of the 
error in the values of the angular accelerations that you calculate using these equations. 
Hint: You do NOT need to use the formulae for propagation of errors. 

 
2. The flywheel can be considered to consist of 
 

i. a hollow outer cylinder, 
ii. a solid inner cylinder, and 
iii. three spokes. 

 
The contribution to the overall moment of inertia of the flywheel is dominated by the 
outer cylinder, whose mass is 3 kg.  If the length of the outer cylinder is 10 cm and its 
inner and outer radii are 9.6 cm and 9.9 cm, respectively, calculate an approximate value 
for the moment of inertia of the flywheel. All values are approximate, and may not 
correspond very closely to the flywheel you use. 

 
3. How does the value of rα1/g compare with 1, given that the radius of the largest axle is 

approximately r = 3.2 cm and that the largest value of α1 is given in the guide sheet. 
 
4. What implication does your answer to question 3 have for the calculation of the error in 

the expression Mgr(1-rα1/g) ? 
 
5. Suppose that the frictional torque increased linearly with the load on the axis. What form 

would you expect the plot of α1 versus Mgr(1-rα1/g) to take? 
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 THE TORSION PENDULUM 
 

The complete, interactive guide sheet of this experiment can be found at 
http://faraday.physics.utoronto.ca/IYearLab/Intros/TorsionPend/TorsionPend.html 

 
 ABSTRACT 
A hollow cylinder hanging from a wire may oscillate in the horizontal plane. We call its angular 
displacement from the equilibrium position . The wire is twisted at each oscillation and there is 
a restoring torque which brings it back to equilibrium. The twisted wire stores potential energy. 
The period of a torsion pendulum is given by 

   
c
I2 = T π   

where I is the moment of inertia of the body about its axis of oscillation and c is the torsion 
constant of the suspension wire.   

 
Note the similarity to a spring-mass system undergoing simple harmonic motion 

   
where m is the mass and k is the spring constant.   

 

In the experiment you will measure the period T for a number of objects with different moments 
of inertia I. Then a plot of T2 versus I should be a straight line with slope 4 π2 / c. Thus you can 
determine the torsion constant c for the wire. 

k
m2 = T π
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THE GYROSCOPE 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/gyroscop.pdf 
 

 
One of the most interesting areas in the science of rotational dynamics is the study of spinning 
solid objects: tops, hoops, wheels, etc. From the gyrocompass (which indicates true North, rather 
than Magnetic North) to an understanding of how a cyclist turns corners, the applications of this 
field of study are both practical and fascinating. This experiment is designed to introduce you to 
some of these interesting and often counter-intuitive properties of rotating bodies. 
 
The apparatus consists of a 2.7 kg cylindrical rotor that is spun at a constant rate by an electric 
motor.  The rotor is mounted in a double gimbal arrangement which allows it to assume any 
orientation. 
 
First, you will measure the spin angular velocity of the rotor ω (in radians per second). The 
moment of inertia I can be calculated from the dimensions of the rotor arm, considered as the 
difference between two solid cylinders. The angular momentum of the rotor around the spin axis, 
L, can now be found analytically by using the I and ω. Then, you will study two properties of the 
gyroscope: precession and nutation. 
 
Diagrams and discussion of the operation of the gyroscope: 
The Feynman Lectures on Physics, Chapter 20. Copy available at the Resource Centre. 
Operation and Instruction Manual for the MITAC Gyroscope. Copy available at the Resource 
Centre. 
 
General references: 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. 
R.A. Serway and J.W. Jewett. Principles of Physics, 3rd edition. Brooks/Cole, 2002. 
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 OSCILLATIONS OF A SPHERE 

OSCILLATIONS OF A SPHERE 
ON A CONCAVE SURFACE 

 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/oscofsph.pdf 
 

 
On first glance, the motions of a sphere on a concave spherical surface of radius of curvature R 
might appear to be that of a simple pendulum of length R. However, a quick recognition of the 
effects of the moment of inertia of the sphere leads to a different conclusion. If a sphere of radius 
a undergoes small oscillations on a surface of radius R, without slipping, the period is given by 

 















g

a - R
5
7 2 = T

2
1

π  

You must derive this relation as part of your lab write-up. 
 
This experiment enables a simple precise measurement of the radius R. 
  
The apparatus will allow a measurement of R. This can be best done by using several different 
spheres on the surface and plotting  T 2 versus a. The measurement of R can be checked by using 
the spherometer, which is a purely callipering device.  
 
R.A. Serway and J.W. Jewitt. Principles of Physics, 3rd edition. Brooks/Cole, 2002. 
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THE WILBERFORCE SPRING 

 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/WilberforcePendulum.pdf 
 

The Wilberforce spring can undergo two types of harmonic motion: 
  
First, it can oscillate up and down, in which case the period should depend only on the particular spring 
used and the total mass on the end of the spring. 
 
The other type of harmonic motion possible is a rotational oscillation.  The period of the rotational 
oscillation depends on the particular spring and on the moment of inertia I of the mass (weight plus 
frame system) on the end of the spring.  I can be varied by moving the position of the movable weights. 
 
In this system, these two types of harmonic motion, translational and rotational, are not entirely 
independent; there is a slight coupling between them.  This is because the spring has a slight tendency 
to coil and uncoil as it is extended or compressed.  The Wilberforce spring is thus an example of two 
weakly coupled resonant systems, other examples being the splitting of energy levels in the ammonia 
molecule and two simple pendula of similar length with a spring joining the upper parts of their strings. 
The Wilberforce spring is a good way to study mechanical resonance in coupled systems. 
 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. 
R.A. Serway. Physics for Scientists and Engineers, 4th edition. Saunders College Publ., 1996. 
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BOYLE’S LAW 
 

The complete, interactive guide sheet of this experiment can be found at 
http://faraday.physics.utoronto.ca/IYearLab/Intros/BoylesLaw/BoylesLaw.html 

 
 ABSTRACT 
Boyle’s Law states that at constant temperature, the pressure p of the gas times its volume V will 
remain constant: 

pV = constant. 

The above relation is only approximately true. This experiment will allow you to explore this 
relation of pressure and volume for a fixed quantity of a real gas (dry air) at room temperature 
and at pressures not very different from normal atmospheric pressure. 
 
You will take indirect measurements of p and V. By using a graphical analysis method, Boyle’s 
Law can be verified and the kinetic energy of the air molecules in volume V can be calculated. 
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 SURFACE TENSION 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/surftens.pdf 
 

 
The surface of a liquid behaves in some respects as if it were a stretched film or membrane under 
tension, and the surface tension, T is defined as F/ l , where F is the force which the surface 
exerts on a line of length R in the surface; F is directed at right angles to the line considered. The 
surface tension of a liquid depends very markedly upon the presence of impurities in the liquid 
and upon temperature. 
 
This experiment is intended to give you an understanding of: 
 
- The concept of the phenomenon of surface tension. 
- Three methods of measuring surface tension, along with a comparison of and critical evaluation 
of these methods. 
- Factors affecting the surface tension. 
- The use of certain pieces of apparatus such as a tensiometer, a travelling microscope, and a       
 hydrometer. A hydrometer measures the density of liquids. 
 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003.  
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 VISCOSITY OF WATER BY CAPILLARY FLOW 
 
 
LYou may find the complete guide sheet at 
http://faraday.physics.utoronto.ca/IYearLab/viscosit.pdf 
 
 

If you have not yet encountered the concept of viscosity in your studies, read the 
relevant introduction to the subject in one of the references. 

  
The coefficient of viscosity of a fluid can be found from measurements of the volume rate of 
flow through small tubes. For a simple analysis to be possible, laminar or streamlined flow must 
prevail. 
 
For streamlined flow of a liquid through a tube, the volume rate of flow, Q, is given by 
Poiseuille’s formula: 

 p 
8

a = Q
4

lη
π  or transposing: Q 

a
8 = p 4π
ηl  

 
where a is the radius of the tube, R its length, and p the pressure difference across its length.  
Note that this formula reflects the physical equilibrium situation of a force on the fluid due to a  
pressure difference p being balanced by a viscous force (i.e., one due to a frictional effect), with 
no other forces acting. J.L.M. Poiseuille, a French physician interested in the circulation of 
blood, experimentally determined the formula in 1835. 
 
The flow of water, Q, is to be measured at several values of p and for two or three different 
capillary tubes (available at the Resource Centre). The pressure p depends on the head of water, 
i.e., the height of the water in the reservoir above the level of the tube.  
 
D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics, 6th edition. Wiley, 2003. 
 




